Reproducible Machine Learning in Climate Science

We are a PhD Student and a Machine Learning

Engineer 9

Our aim was to build a Python toolbox for working with ML using weather and climate data

ML is hard for me and you,

Weather is tough for others too.

Interpretability makes us all fearful,

So we wrote some code to make it cheerful!

We developed a modular and extensible pipeline to

apply machine learning to climate science

First results - using machine learning to predict vegetation health

District	VCI3M			VCI	
	Adede et al. [2019]	EA-LSTM	Persistence	EA-LSTM	Persistence
Mandera	0.71	0.91	0.57	0.80	0.34
Marsabit	0.77	0.75	0.50	0.77	0.54
Turkana	0.83	0.39	0.41	0.27	0.30
Wajir	0.71	0.82	0.52	0.83	0.51

Table 1: \mathbb{R}^2 values reported by Adede et al. [2019], our EA-LSTM model and the baseline persistence model. For the Adede et al. [2019] model, VCI is aggregated over three months - results in both the aggregated and unaggregated case are presented. The performance of the model in Turkana compared to the other districts suggests there is still region-specific information the model is missing.

Our initial experiments showed some skill!

We were strongly influenced by this talk

Reproducibility

@ ICLR 2019

Reproducibility is central to the ideals of scientific

Openness

Replicability / Repeatability

Reproducibility

Extensibility

Collaboration

Open and Reproducible Science

"you can't stand on the shoulders of giants if they keep their shoulders private"

Grus 2019

We wanted to utilise the tools from Software

Engineering

We wanted to allow other people (and future us) to **train**, **use** and **reproduce** our models

Unit testing allows us to be confident our pipeline does what we expect

Travis CI APP 11:29 AM

Build #983 (c6005f2) of esowc/ml_drought@analysis/indices by tommylees112 passed in 12 min 21 sec

We used type hints to better communicate what functions did, and to leverage type checkers

We use json configurations to keep track of what experiments are run (WIP)

```
},
"models": {
    "Persistence": {
        "init_args": {"experiment": "one_month_forecast"},
        "train_args": {},
        "evaluate_args": {"save_preds": true}},

"EARecurrentNetwork": {
        "init_args": {"hidden_size": 128, "experiment": "one_month_forecast", "include_pred_month": true},
        "train_args": {"num_epochs": 50, "early_stopping": 5},
        "evaluate_args": {"save_preds": true}
    }
}
```


Making scientific workflows fully reproducible is

hard...

- Unit Testing
- Experimental vs. Library code
- Source Control
- Parameters as Arguments

- Documentation
- Instructions

Lessons learned:

- Infrastructure communicates what code does.
- The **initial time investment** is worth investing.
- There is a tension between experimenting quickly, and maintaining well-tested robust code.

Our Summer in Numbers

- 131 commits to master branch
- 37 Github issues
- 87 Pull Requests
- +15,600 slack messages
- 18,544 lines of Python code
- 188 tests written

15,600 messages

131 commits

18,544 lines of code

To the future ...

- Work with forecast data
- Test for different problems
- ml_climate.readthedocs.io
 documentation!
- Improve our VCI predictions

Usability Performance Analysis

Let's innovate together.

Appendix

We focused on predicting an agricultural drought index in Kenya

Lessons learned:

- The biggest benefit of all this infrastructure is easier communication of what code is supposed to do
- A little overhead at the beginning of the project (setting up CI) reaps big rewards later
- It is challenging to manage the tension between experimenting quickly,
 but also keeping well-tested robust code

Our data sources include satellite data and model

outputs

exporters

The Exporters are responsible for **downloading** data from external sources. They have a common `exporter.export()` method for downloading data.

```
def export_vhi():
    if Path('.').absolute().as_posix().split('/')[-1] ==
    'ml_drought':
        data_path = Path('data')
    else:
        data_path = Path('../data')
    exporter = VHIExporter(data_path)
    exporter_export()
def export chirps():
    if Path('.').absolute().as_posix().split('/')[-1] ==
    'ml_drought':
        data_path = Path('data')
    else:
        data_path = Path('../data')
    exporter = CHIRPSExporter(data_path)
    exporter.export(years=None, region='global',
    period='monthly')
```


The Preprocessors work to convert these different datasets into a **unified data format**. This makes testing and developing different models much more straightforward.

The Preprocessors work to convert these different datasets into a **unified data format**. This makes testing and developing different models much more straightforward.

```
def process precip 2018():
    ../data
    if Path('.').absolute().as_posix().split('/')[-1] ==
    'ml_drought':
        data_path = Path('data')
    else:
        data_path = Path('../data')
    processor = CHIRPSPreprocesser(data_path)
    processor.preprocess(subset_str='kenya',
                         parallel=False)
```


The Engineer class works to create **train and test data**. This class reads preprocessed data and writes out X, y pairs of data. This class allows us enormous flexibility to choose input and output variables.

[y]

Apr

The Engineer class works to create **train and test data**. This class reads preprocessed data and writes out X, y pairs of data. This class allows us enormous flexibility to choose input and output variables.

```
def engineer(experiment='one_month_forecast', process_static=True,
             pred_months=12, test_year=2018):
    if Path('.').absolute().as_posix().split('/')[-1] ==
    'ml drought':
        data_path = Path('data')
    else:
        data_path = Path('../data')
    engineer = Engineer(data_path, experiment=experiment,
    process_static=process_static)
    engineer.engineer(
        test_year=test_year, target_variable='VCI',
        pred_months=pred_months, expected_length=pred_months,
```


The Models implement our **predictions**. They take the train / test data output by the engineer for fitting and produce predicted values. They are currently mostly machine learning models.

- Persistence (previous month)
- Linear Regression
- Linear (classical) Neural Network
- Recurrent Neural Network LSTM
- Entity Aware LSTM (Hydrology Specific Architecture!)


```
def regression(
    experiment='one_month_forecast',
    include pred month=True,
    surrounding pixels=1.
    ignore_vars=None,
    include static=True
):
    if Path('.').absolute().as_posix().split('/')[-1] ==
    'ml drought':
       data_path = Path('data')
    else:
       data path = Path('../data')
   predictor = LinearRegression(
       data_path, experiment=experiment,
        include pred month=include pred month,
        surrounding pixels=surrounding pixels.
        include_static=include_static,
    predictor.train()
    predictor.evaluate(save_preds=True)
```

The Models implement our **predictions**. They take the train / test data output by the engineer for fitting and produce predicted values. They are currently mostly machine learning models.

```
def linear_nn(
    experiment='one_month_forecast',
    include pred month=True,
    surrounding pixels=1.
    ignore vars=None.
    include static=True,
):
    if Path('.').absolute().as_posix().split('/')[-1] ==
    'ml_drought':
        data_path = Path('data')
    else:
        data_path = Path('../data')
    predictor = LinearNetwork(
        layer sizes=[100], data folder=data path,
        experiment=experiment.
        include_pred_month=include_pred_month,
        surrounding_pixels=surrounding_pixels,
        include_static=include_static,
    predictor.train(num_epochs=50, early_stopping=5)
    predictor.evaluate(save_preds=True)
    predictor.save model()
```


Incorporate static variables and dynamic variables

Benchmarking a Catchment-Aware Long Short-Term Memory Network (LSTM) for Large-Scale Hydrological Modeling

Frederik Kratzert¹, Daniel Klotz¹, Guy Shalev², Günter Klambauer¹, Sepp Hochreiter^{1,*}, and Grey Nearing^{3,*}

Correspondence: Frederik Kratzert (kratzert@ml.jku.at)

¹LIT AI Lab & Institute for Machine Learning, Johannes Kepler University Linz, Austria

²Google Research

³Department of Geological Sciences, University of Alabama, Tuscaloosa, AL United States *Shared last author

Classic LSTM

Entity Aware LSTM

Initial Experiments

$$t = 0$$

t = 1

train = 1981 - 2017 test = 2018

n previous months = 12

Initial Experiments

$$t = 0$$

t = 1

train = 1981 - 2017 test = 2018

n previous months = 12

Initial Results - EALSTM

- We fit a number of different machine learning models.
- EALSTM seems to have performed significantly better than the other models.

Initial Results

Preliminary Results in April

Preliminary Results in May

Initial Results

		VCI			
District	Adede et al. [2019]	EA-LSTM	Persistence	EA-LSTM	Persistence
Mandera	0.71	0.91	0.57	0.80	0.34
Marsabit	0.77	0.75	0.50	0.77	0.54
Turkana	0.83	0.39	0.41	0.27	0.30
Wajir	0.71	0.82	0.52	0.83	0.51

Table 1: R^2 values reported by Adede et al. [2019], our EA-LSTM model and the baseline persistence model. For the Adede et al. [2019] model, VCI is aggregated over three months - results in both the aggregated and unaggregated case are presented. The performance of the model in Turkana compared to the other districts suggests there is still region-specific information the model is missing.

Initial Results

https://github.com/esowc/ml drought/blob/master/notebooks/draft/15 gt ealstm.ipynb

Results - We do best in Cropland areas

-V W	~	•					
r2		mae	rmse	region_name	admin_level_name	model	
99256	0.1	5.395350	8.143682	cropland_rainfed_one_hot	landcover	rnn	0
1413	-13.6	6.953503	8.618315	tree_or_shrub_cover_one_hot	landcover	rnn	1
37254	-0.2	6.901316	9.545614	cropland_irrigated_or_postflooding_one_hot	landcover	rnn	2
NaN		NaN	NaN	no_data_one_hot	landcover	rnn	3
19336	0.1	5.716190	8.157337	herbaceous_cover_one_hot	landcover	rnn	4
17371	0.6	4.189554	5.404216	cropland_rainfed_one_hot	landcover	ealstm_surrounding_0	5
2724	-4.0	4.075745	5.068028	tree_or_shrub_cover_one_hot	landcover	ealstm_surrounding_0	6
37846	0.5	4.098703	5.509399	cropland_irrigated_or_postflooding_one_hot	landcover	ealstm_surrounding_0	7
NaN		NaN	NaN	no_data_one_hot	landcover	ealstm_surrounding_0	8
30802	0.6	4.210546	5.374018	herbaceous_cover_one_hot	landcover	ealstm_surrounding_0	9

Appendix - Administrative Level performance

	Unnamed: 0	0	model	admin_level_name	rmse	mae	r2	
0	6	0	rnn	region_kenya	10.456015	7.960484	0.296722	
1	1	1	ealstm_surrounding_0	region_kenya	7.250155	5.744490	0.662912	
2	2	2	rnn	division_l3_kenya	11.729663	9.034048	0.362789	
3	3	3	ealstm_surrounding_0	division_l3_kenya	8.297145	6.545985	0.679212	
4	4	4	rnn	location_l4_kenya	12.860918	9.986623	0.388949	
5	5	5	ealstm_surrounding_0	location_l4_kenya	9.696184	7.643787	0.653535	
6	6	6	rnn	district_l2_kenya	10.456015	7.960484	0.296722	
7	7	7	ealstm_surrounding_0	district_l2_kenya	7.250155	5.744490	0.662912	
8	8	8	rnn	province_l1_kenya	9.904732	7.494977	0.353457	
9	9	9	ealstm_surrounding_0	province_l1_kenya	6.613191	5.059705	0.711774	
			December 1980 Carrier St. 1990 Carrier S			cosport to the		(학 (국) ☆ …

The Exporters are responsible for **downloading** data from external sources. They have a common 'exporter.export()' method for downloading data.

The Preprocessors work to convert these different datasets into a **unified data format**. This makes testing and developing different models much more straightforward.

The Preprocessors work to convert these different datasets into a **unified data format**. This makes testing and developing different models much more straightforward.

The Engineer class works to create **train and test data**. This class reads preprocessed data and writes out X, y pairs of data. This class allows us enormous flexibility to choose input and output variables.

[y]

Apr

Model interpretability was a key component of our

- We were particularly interested in understanding the patterns being learnt by the model.
- We used the DeepSHAP implementation of DeepLIFT to interpret how an input data points affected a model's final prediction

The Models implement our **predictions**. They take the train / test data output by the engineer for fitting and produce predicted values. They are currently mostly machine learning models.

- Persistence (previous month)
- Linear Regression
- Linear (classical) Neural Network
- Recurrent Neural Network LSTM
- Entity Aware LSTM (Hydrology Specific Architecture!)

In addition to the pixel wise climate values, we fed the model a few additional inputs

- Model extras
 - Surrounding Pixels
 - One hot encoded month
 - Spatial Climatology (for each month)
 - Spatial Mean of input timesteps

The Analyzers are a broad set of classes for **plotting and understanding** our predictions. They help us explore regional trends, better understand the patterns models are learning and evaluate our performance.

- Climate Indices.
- Identify 'runs' of drought events.
- Aggregate results by region or landcover.
- Diagnose feature contributions (SHAP).
- Calculate performance metrics (RMSE, R^2).
- Plotting functions.

- We were particularly interested in understanding the patterns being learnt by the model.
- We used the DeepSHAP implementation of DeepLIFT to interpret how an input data points affected a model's final prediction

The Analyzers are a broad set of classes for **plotting and understanding** our predictions. They help us explore regional trends, better understand the patterns models are learning and evaluate our performance.

