ECMWF Data Governance

Maintaining consistency and reproducibility in our meteorological data archive using Data Governance

Sebastien Villaume

Senior analyst in the products team @ ECMWF Sebastien.Villaume@ecmwf.int

Data Governance workflow: what's that all about?

- an agreed process to manage decisions about data
- Provide expert guidance when data related decisions need to be made
- collaborate closely with relevant international bodies (such as WMO, OGC and netCDF/CF) to support current standards and develop those which will be used in the future
- Increased consistency and reproducibility
- Increased data interoperability within the organisation and partners
- Improved data discovery
- Increased usability and reusability of data sets

The ECMWF meteorological data archive: MARS

- ~300 PB of data (without accounting for the backups)
- Roughly 400 billions individual records
- In "only" 11.5 millions files
- Few more hundreds of TB produced daily
- Deliver several tens of TB outside ECMWF

Without careful curation and use of controlled vocabularies, the archive would become a mess

Any single record can be retrieved using 10-15 key/values pairs

Retrieving data from the archive

```
Retrieve,
    class=od, # operational data
    stream=enfo, # ensemble forecast
    expver=1, # versioning
    type=pf, # perturbed forecast
    levtype=pl, # pressure level
    levelist=700/850/925/1000, # values of the pressure levels
    date=20191001, # date
    time=12, # UTC time
    step=1/TO/24, # 24 first hours of the forecast
    number=1/TO/50, # 50 ensemble members
    parameters=t/u/v # temperature, u/v components of wind
    target=theFilenameYouLike.out
```


what are the challenges?

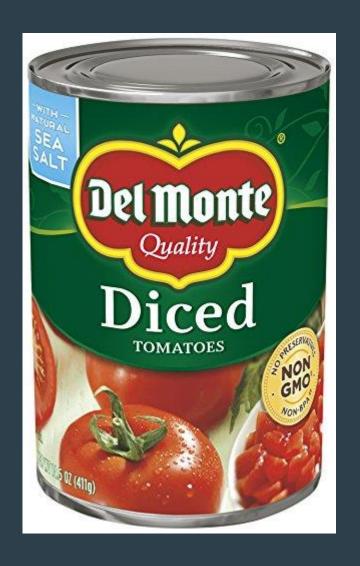
- Quite often, researchers do not realise how important it is to define properly the metadata.
- Metadata should be consistent across the archive
- Metadata should stay generic and avoid using community terms
- Metadata should integrate well with other standards to allow interoperability and format conversion

Metadata scoping

- Metadata can be categorised into 3 groups:
 - Core metadata (anything mandatory to decode and use the data):
 parameter, units, grid resolution, validity date and time, packing, projection
 - Indexing metadata (anything that helps categorise the data):
 data producer, forecasting system, model version
 - Superfluous metadata:

Any information that is not used to describe nor index the data

Data without metadata is useless!


Data with incomplete metadata is not really better!

data with all the metadata!

Production date Expiry date Batch number

Product name

"units"

identifier

ISO, norms, standards

Quality Control, Information, Composition

producer

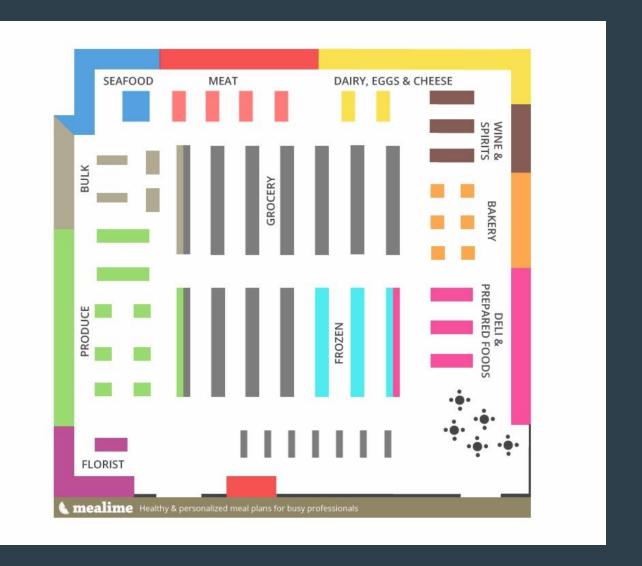
Description or Marketing crap?

Contact info

Indexing metadata: really like in a normal store!

Indexing works the same way

Departments (Grocery)


Aisles (canned food)

Shelves (canned vegs)

Category (canned tomatoes)

Sub-Category (canned diced tomatoes)

product (canned diced tomatoes from a specific brand)

Back to the Data Governance Workflow

- Example of requests we receive:
 - New parameters:

"Probability of Precipitation for the following thresholds 25mm/24h, 50mm/24h and 100mm/24h" mixed layer convective available potential energy in the lowest 50 hPa"

– New concepts:

Possibility to encode source/sink for the atmospheric composition model (source of emissions, carbon sinks, etc.)

possibility to encode parameters on soil, snow and sea-ice multilayers

– New datasets:

allocate identifiers for new datasets or new types of data

Encoding in GRIB2: "probability of total precipitation of at least 25mm"

Discipline	0	Meteorology
parameterCategory	1	Moisture
parameterNumber	52	Total precipitation rate
typeOfStatisticalProcessing	1	Accumulation
typeOfFirstFixedSurface	1	surface
productDefinitionTemplateNumber	9	Probability forecasts at a horizontal level or in a horizontal layer in a continuous or non-continuous time interval
probabilityType	3	Probability of event above lower limit
scaledValueOfLowerLimit	25	Threshold value
scaleFactorOfLowerLimit	0	No scaling

Encoding in GRIB2: source/sink for atmospheric composition

Octet No. Contents

- 10 Parameter category (see Code table 4.1)
- 11 Parameter number (see Code table 4.2)
- 12–13 Atmospheric chemical constituent type (see Code table 4.230)
- 14 source, sink or chemical/physical process (see Code table 4.238)
- 15 Type of generating process (see Code table 4.3)
- 16 Background generating process identifier (defined by originating centre)
- 17 Analysis or forecast generating process identifier (defined by originating centre)
- 18–19 Hours of observational data cut-off after reference time (see Note)
- 20 Minutes of observational data cut-off after reference time
- 21 Indicator of unit of time range (see Code table 4.4)
- 22–25 Forecast time in units defined by octet 20
- 26 Type of first fixed surface (see Code table 4.5)
- 27 Scale factor of first fixed surface
- 28–31 Scaled value of first fixed surface
- 32 Type of second fixed surface (see Code table 4.5)
- 33 Scale factor of second fixed surface
- 34–37 Scaled value of second fixed surface

Encoding in GRIB2: source/sink for atmospheric composition

Code table 4.238 - source, sink or chemical/physical process

```
Name
Code
       Reserved
       aviation
       lightning
3
       biogenic sources
       anthropogenic sources
4
5
      wild fires
6
      natural sources
      volcanoes
8
      bio-fuel
    fossil-fuel
    wetlands
11
      oceans
12-191 Reserved
192-254 Reserved for local use
255 Missing
```


The Data Governance Workflow: initiating the process

Not Data Governance scope: guide the reporter

Request for a new parameter or concept

Data Governance initial assessment

Data Governance scope: initiate process

The Data Governance Workflow: core work

Require a new parameter or concept already defined by the standard

A Data Facilitator takes ownership of the request

The data facilitator gathers requirements from the reporter, organises meetings and liaises with domain experts

Require a new parameter or concept NOT defined by the standard

The Data Governance Workflow: extend the data format

Require a new parameter or concept

The data facilitator, the data steward and the reporter write a proposal for extending the standard

Submit proposal

GRIB and BUFR formats are maintained by WMO team "Inter Programme Expert Team on Code Maintenance" (IPET-CM).

Marijana and myself are members of the team.

The Data Governance Workflow: propose encoding

Approved: implementation in our software stack starts

The data facilitator drafts a proposal for encoding

Data Governance board reviews the proposed solution

Rejected: the board raises concerns to be resolved

The Data Governance Workflow: implementation

- The solution is implemented is our software stack:
 - Encoding/decoding in <u>ecCodes</u>
 - Entry in the Parameter Database: <u>paramDB</u>
 - Interpolation in MIR
 - Plotting with <u>Magics</u>
 - Archiving in MARS (clients and servers)
 - model output (IFS, NEMO, etc.)
 - Once this is done and tested, the case is closed ©

Concluding remarks

- Metadata is as important as the data
- Implementing the Data Governance process has proven to be very valuable for ECMWF.
- 200+ cases looked at since we started in January 2017

