Experience from Arctic field campaigns: Weather forecasting and evaluations, and model comparisons

Michael Tjernström Department of Meteorology & Bolin Centre for Climate Research Stockholm University, Sweden

With lots of help and support from very many individuals, to many to mention, and organizations through IPY & YOPP, by the Swedish Arctic Research program, funding agencies like NCAR, NERC, the Wallenberg Foundation, Swedish Research Council, US Office of Naval Research....

Data without models is chaos... ...but models without data is guesswork

(Patrick Crill, Stockholm Uni.)

On the utility of field observations for NWP:

- To help formulate the conceptual models, shaping how we think about processes that need parameterization
- To reveal the process relationships, the understanding of the system, necessary improve model formulations
- Evaluate models in several different ways

<u>Conceptual models 2</u>: Lower-troposphere vertical structure...

	Winter	Spring	Summer	Autumn	
Surface	53%	15%	9%	61%	Inversion base < 15 m
Elevated	47%	85%	91%	39%	Inversion base > 15 m

	Winter	Spring	Summer	Autumn	
Surface	53%	15%	9%	61%	Inversion base < 15 m
Elevated	47%	85%	91%	39%	Inversion base > 15 m

Composite from four different summer campaigns

De-coupled vs. Coupled

Model evaluations: "Climate"

Data without models is chaos... ...but models without data is guesswork

(Patrick Crill, Stockholm Uni.)

On the utility of NWP for field Arctic observations:

- When operating on the ice in the Arctic Ocean, safety is the paramount issue; for this accurate NWP is key
- Planning logistics like operations helicopter flights or snowmobiling on the ice requires accurate NWP
- Deployment of observing systems, such as UAVs or tethered platforms require accurate and detailed information on PBL structure and clouds

Forecasting on board:

 Ship's operational forecasting for helicopter flights and general safety and logistics (visibility & clouds, winds & precipitation)

Specific humidity (g kg⁻¹), tot cloud water+ice (kg m⁻²) & acc. precip. (mm)

Moisture, cloud water &

0 1.25 2.5 3.75

00 24 48 72

Forecasting on board:

- Low bandwidth think about methods...
- Cultural differences think about education...
- Forecast quality (subjective evaluation of IFS):
 - Cloud forecasts essentially *useless*
 - Temperature forecasts *less than useful*, probably partly because of clouds
 - Major precipipitation is good but often "drizzling" a little in between
 - Moisture forecsts very useful mostly for fog & cloud forecasting
 - Winds were scaringly accurate!

Forecasting on board:

- Low bandwidth think about methods...
- Cultural differences think about education...
- Forecast quality (subjective evaluation of IFS):
 - Cloud forecasts essentially *useless*
 - Temperature forecasts less than useful, probably partly because of clouds
 - Major precipipitation is *good* but continuously "drizzling" a little
 - Moisture forecsts very useful mostly for fog & cloud forecasting
 - Winds were scaringly *accurate*!

Forecast quality (objective evaluation of IFS):

- Using our own weather station (@ 20 m) & sondes in near-real-time
- Weather station data averaged over ~10 minutes, centered on model time
- Model results vertically interpolated to sounding resolution(!)
- Soundings released 30 minutes prior to nominal time; no time interpolation
- Median bias, 25-75 percentiles, pdf

Wind direction

Some parting thoughts...

- Field campaign observations comes in all along the whole chain of developing model physics:
 - Discovery and understanding
 - · Parametrization, closure and calibration
 - Testing and evaluation

This is often (always?) an iterative process

- Accurate forecasting is vital for any field campaign but needs to be adapted to particular conditions. Arctic field campaigns have special problems (keep it simple dummy!); there is no one size fits all
- In Arctic summer IFS has a severe cloud problem, a mysterious PBL warm bias with a diurnal cycle that does not exist, and some other strange oscillations

