Experience from Arctic field campaigns: Weather forecasting and evaluations, and model comparisons

Michael Tjernström
Department of Meteorology & Bolin Centre for Climate Research
Stockholm University, Sweden

With lots of help and support from very many individuals, to many to mention, and organizations through IPY & YOPP, by the Swedish Arctic Research program, funding agencies like NCAR, NERC, the Wallenberg Foundation, Swedish Research Council, US Office of Naval Research....
Data without **models** is chaos...

...but models without data is guesswork

(Patrick Crill, Stockholm Uni.)

On the utility of field observations for NWP:

- To help formulate the conceptual models, shaping how we think about processes that need parameterization

- To reveal the process relationships, the understanding of the system, necessary to improve model formulations

- Evaluate models – in several different ways
Conceptual models 1: Mixed-phase clouds in cold climates...
Conceptual models 2: Lower-troposphere vertical structure...

<table>
<thead>
<tr>
<th></th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>53%</td>
<td>15%</td>
<td>9%</td>
<td>61%</td>
</tr>
<tr>
<td>Elevated</td>
<td>47%</td>
<td>85%</td>
<td>91%</td>
<td>39%</td>
</tr>
</tbody>
</table>

Inversion base < 15 m

Inversion base > 15 m
Tjernström & Graversen 2009

<table>
<thead>
<tr>
<th>Season</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>53%</td>
<td>15%</td>
<td>9%</td>
<td>61%</td>
</tr>
<tr>
<td>Elevated</td>
<td>47%</td>
<td>85%</td>
<td>91%</td>
<td>39%</td>
</tr>
</tbody>
</table>

Inversion base < 15 m

Inversion base > 15 m

Composite from four different summer campaigns
Coupled

Decoupled

Stable

Solid – IFS (Cy40HR)
Dashed – observations

Coupled
Decoupled
Stable

Sotiropoulou et al. 2014

Day of August 2008

Ri-class

Stockholm University
Process relationships 1:

Turbulent surface fluxes (this is really old)...

Flux $\sim C_x U \Delta$

Shape and spread!

Observations

Models

Tjernström et al. 2005
Process relationships 2:

Cloud/radiation interactions

$LT S = \theta_e(950hPa) - \theta_e(sfc)$

Courtesy Sedlar et al. 2005
$LTS = \theta_e(950\text{hPa}) - \theta_e(sfc)$
Model evaluations: "Climate"

SHEBA/ARCMIP

ACSE/CORDEX

Liquid water path (kg m$^{-2}$)

Relative probability (%)

Relative frequency [%]

Tjernström et al. 2007
Courtesy Sedlar et al. 2005
Data without models is chaos...
...but models without data is guesswork

(Patrick Crill, Stockholm Uni.)

On the utility of NWP for field Arctic observations:

- When operating on the ice in the Arctic Ocean, safety is the paramount issue; for this accurate NWP is key.

- Planning logistics like operations helicopter flights or snowmobiling on the ice requires accurate NWP.

- Deployment of observing systems, such as UAVs or tethered platforms require accurate and detailed information on PBL structure and clouds.
Arctic Ocean 2018
1 August – 21 September
Cloud radar

Scanning lidar & microwave profilers

Weather station, visibility, surface temperature, clouds & radiation

Aerosols
Forecasting on board:
• Ship’s operational forecasting for helicopter flights and general safety and logistics (visibility & clouds, winds & precipitation)
• Science planning, special forecasts provided by APPLICATE (PBL structure and clouds)
Forecasting on board:

• Low bandwidth – think about methods..
• Cultural differences – think about education...
• Forecast quality (subjective evaluation of IFS):
 • Cloud forecasts essentially *useless*
 • Temperature forecasts *less than useful*, probably partly because of clouds
 • Major precipitation is *good* but often ”drizzling” a little in between
 • Moisture forecasts *very useful* – mostly for fog & cloud forecasting
 • Winds were scarily *accurate*!
Forecasting on board:
• Low bandwidth – think about methods..
• Cultural differences – think about education...
• Forecast quality (subjective evaluation of IFS):
 • Cloud forecasts essentially **useless**
 • Temperature forecasts **less than useful**, probably partly because of clouds
 • Major precipitation is **good** but continuously ”drizzling” a little
 • Moisture forecasts **very useful** – mostly for fog & cloud forecasting
• Winds were scarily **accurate**!

Forecast quality (objective evaluation of IFS):
• Using our own weather station (@ 20 m) & sondes in near-real-time
• Weather station data averaged over ~10 minutes, centered on model time
• Model results vertically interpolated to sounding resolution(!)
• Soundings released 30 minutes prior to nominal time; no time interpolation
• Median bias, 25-75 percentiles, pdf
Some near-surface (@20 m) variables
Boundary layer warm bias, \(\sim 1 \, ^\circ C \) below \(\sim 300 \) m

Middle troposphere warm bias, \(\sim 0.5 \, ^\circ C \) 3 to 6 km

Lower troposphere cold bias, \(\sim -1 \, ^\circ C \) 0.5 to 3 km

 Thermal structure
Moisture structure

Same layering, moist bias in the PBL and dry above, but around zero where moisture is low. Also a weird periodicity ~1km that seems to grow.
Scalar wind speed

High bias in PBL, low down partly a measurements artifact but also real

Also note weird periodicity at PBL top
Wind direction

[Two contour maps showing wind direction over time and altitude. The maps are color-coded with a legend on the right side indicating wind direction values from 0 to 90 degrees.]
Diurnal cycle?

Inertial oscillation?
Some parting thoughts...

• Field campaign observations comes in all along the whole chain of developing model physics:
 • Discovery and understanding
 • Parametrization, closure and calibration
 • Testing and evaluation

This is often (always?) an iterative process

• Accurate forecasting is vital for any field campaign but needs to be adapted to particular conditions. Arctic field campaigns have special problems (keep it simple dummy!); there is no one size fits all

• In Arctic summer IFS has a severe cloud problem, a mysterious PBL warm bias with a diurnal cycle that does not exist, and some other strange oscillations