

A coordinated atmosphere-ocean research project, centered on a rare wintertime field campaign to the Iceland and Greenland Seas, seeks to determine the location and causes of dense water formation by cold-air outbreaks

See: Renfrew, Pickart, et al. (2019, BAMS)

R/V *Alliance* winter cruise

- 43 days from Reykjavik, Iceland
- February and March 2018

Meteorological instrumentation:

- Basic meteorology
- Radiosondes (100): Daily to 3-hourly
- HatPro radiometer: BL T profiles
- Windcube lidar: BL wind profiles
- Micro rain radar
- Water vapour isotopes (leg II)

R/V Alliance winter cruise

Sections and surveys

Oceanography instrumentation:

- CTDs, XCTDs & XBTs (total of 453 profiles)
- ADCP & underway CTD
- Argo and RAFOS floats
- Water sampling: salinity, O₂, CFC-12, & SF-6

Long-term observations

- Oceanographic mooring (2 years)
- Meteorological buoy (5 months)
- Sea gliders

Aircraft Campaign

- BAS Twin Otter
- 14 science flights
 - 11 Cold Air Outbreaks
 - 7 over/adjacent sea ice
 - 2 orographic flows
- 70 h flying
 - 500 mins at 20-40 m.

Forecasting tools

Met Office

- Global operational forecast (10 km)
- Global coupled forecast
- Convectionpermitting forecast (2 km)

Forecasting tools

Met Office

- Global operational forecast (10 km)
- Global coupled forecast
- Convectionpermitting forecast (2 km)

DMI/IMO

Limited domain (2.5 km)

Forecasting tools (a) CAO probability

Ensemble
Prediction System
diagnostics based
on ECMWF EPS

- CAO probability of occurrence
- CAO index: $\theta_{SST} \theta_{850}$
- Surface sensible heat flux
- Plots: Lukas
 Papritz (ETH)

(d) CAO probability

(b) ens. mean CAO index

(e) ens. mean CAO index

1200 UTC 20180302 (+132 h)

(c) ens. mean sensible heat flu

1200 UTC 20180301 (+108 h)

(f) ens. mean sensible heat flu

1200 UTC 20180302 (+132 h)

Case study: Development of a Cold Air Outbreak

- 28 February to 2 March 2018
- A cold-air outbreak develops
- Captured via
 - co-ordinated sampling of atmosphere and ocean
 - several research flights
 - 3 hourly radiosondes from the R/V Alliance
 - Repeated CTD/XCTD surveys

Met Office Res. Greenland 2.2km OS38 $P_{\it msl}$, 500hPa Thickness, Precip Rates, Cloud Thu 2018/03/01 12Z T+36 from 2018/02/28 00Z

Met Office Res. Greenland 2.2km OS38 Potential Temperature (°C) at 950 hPa Thu 2018/03/01 12Z T+36 from 2018/02/28 00Z

1 March 2018 Flight 294

 Map CAO airmass upstream & downstream of ship

1 March 2018 Flight 294

 Map CAO airmass upstream & downstream of ship

Potential temperature

Sensible heat flux

Representing surface drag over sea ice

Parameterize 10-metre neutral drag coefficient, C_{dn10} , and account for surface type (skin drag) and surface roughness (form drag).

↓ ↓ ↓
Skin drag Skin drag
over water over ice

C_{df} can be parameterized as a function of Ice fraction

(The simplest conceptual model)

Lüpkes, et al. (2012), J. Geophys. Res., doi:10.1029/2012JD017630.

Representing surface exchange over sea ice

ACCACIA Field campaign – March and April 2013

Elvidge, Renfrew, Weiss, Brooks, Lachlan-Cope and King 2016: Observations of surface momentum exchange over the marginal-ice-zone and recommendations for its parameterization, *Atmospheric Chemistry and Physics*, **16**, 1545-1563.

Drag Coefficient versus Ice Concentration

- 195 data points
- Doubles previously available data

Elvidge, Renfrew, Weiss, Brooks, Lachlan-Cope and King 2016: Observations of surface momentum exchange over the marginal-ice-zone and recommendations for its parameterization, *Atmospheric Chemistry and Physics*, **16**, 1545-1563.

Drag Coefficient versus Ice Concentration: All flights (195 data points)

 c_e = effective resistance coefficient β = sea-ice morphology exponent (describing the dependence of D_i (floe length) on A)

	c _e	s	D_{min}	D_{max}	h _{min}	h _{max}	β
					0.286 m		
E16A	0.17	11	11	II	II	II	11
E16B	0.1	"	п	п	11	п	0.2

Model parameterizations

Impacts of MIZ drag on the atmosphere

MetUM MIZ Drag Experiments:

Rough: a large z_0 (Operational till Sep 2018)

L12E16 (New scheme; GL8)

Smooth: a small z₀ (HadGEM3)

Renfrew, I. A., A. D. Elvidge, J. Edwards 2019: *QJRMS*, **145**, 1165-1179. doi:10.1002/qj.3486

Impacts of MIZ drag on the atmosphere: Wind speed

MetUM MIZ Drag Experiments:

Rough: a large z_0 (Operational till Sep 2018)

L12E16 (New scheme; GL8)

Smooth: a small z₀ (HadGEM3)

	Correlation Coefficient			Bias			RMS Error		
Experi- ment	Rough	L12E16	Smooth	Rough	L12E16	Smooth	Rough	L12E16	Smooth
U	0.51	0.53	0.52	-0.51	-0.06	0.28	2.14	2.09	2.14

Impacts of MIZ drag on the atmosphere: Temperature

0.86

0.93

0.93

2.12

0.02

-0.46

3.62

2.13

2.16

Conclusions of MIZ drag studies

- A new sea-ice drag parameterization has a significant impact on the atmospheric boundary layer, changing the:
 - surface momentum flux by 0.1-0.2 N m⁻² (comparable to the mean)
 - and low-level temperatures by 2-3 K near the MIZ
- Comparing against aircraft observations over and downwind of the MIZ the new 'L12E16' drag scheme has the lowest bias and lowest root-mean-square errors
- In global simulations the atmospheric response is relatively widespread – impacting most of the Arctic and Antarctic seaice areas
- L12E16 became operational at the Met Office in September 2018 and in next configuration of climate model (GA8)

Impact of sea-ice representation: distribution

- Most forecasting systems use very smooth sea-ice analyses, e.g. OSTIA
 - Dramatic impacts locally
 - Impacts downstream?
 - Impacts on atmospheric forecasts?
- 7 flights from IGP

- IGP Case Study
 - OSTIA sea-ice
 - MetUM ice fraction
 - Distribution smoothed

- IGP Case Study
 - SAR image
 - aircraft ice fraction
 - sharp gradients

- IGP Case Study
 - SAR image
 - aircraft ice fraction
 - sharp gradients

Over sea-ice and marginal-ice-zone:

- MetUM systematically overestimates sensible heat flux
- Similar for latent heat flux

Preliminary results!

Preliminary results!

- Exchange coefficients for heat (and moisture) are too large over MIZ
- Ok for drag over MIZ
- BUT only one value is used for 100% sea-ice

Variability within the dataset: Barents Sea

- 99 data points
- small, deformed, pancake ice with raised edges.

Variability within the dataset: Fram Strait

- 101 data points
- homogenous, non-deformed ice

