Saildrones: Global Class Autonomous Surface Vehicles for Air-Sea Interaction Observation

Dongxiao Zhang (JISAO/UW and NOAA/PMEL) Meghan F. Cronin, Christian Meinig (NOAA/PMEL) Richard Jenkins (Saildrone Inc.)

Workshop: Observational campaigns for

ECMWF | Reading | 10-13 June 2019

better weather forecasts

TECHNOLOGY OVERVIEW

SAILDRONE

Unmanned Surface Vehicle (USV)

Green Tech.:

Wind propulsion; Solar power electronics.

Long Endurance:

12-month; 16,100 km.

Large Payload:

>100 kg; Large number of sensor packages.

Saildrones: Global Class Autonomous Surface Vehicles for Air-Sea Interaction Observation

CRADA PMEL-Saildrone Inc 2014

- Bering Sea summer 2015 2016 (surface MetOcean, acoustic fish biomass)
- Tropical Pacific Observing System (TPOS) and NOAA Tech.
 Development 2016-2019 (Air-sea heat, momentum and CO₂ fluxes,
 ADCP upper ocean currents)

Meinig et al. 2019 OceanObs'19

Co-Pls: M. Cronin, D. Zhang, A. Sutton, C. Meinig Postdoc: Samantha Wills

Testing the ability of Saildrone to make climate-quality measurements in the Tropics

Three 6-month missions:

- 1) NASA salinity study (SPURS II) and 125°W section (Sept.2017)
- 2) Equatorial sections 140°W, with and against currents (Oct. 2018)
- 3) Cluster of 4 drones, adaptive sampling around 140°W (June 2019)

- TAO buoys
- TAO buoy with CO₂ flux sensors
- NASA SPURS II Study Site
- Saildrone Mission #1
- Saildrone Mission #2
- Saildrone Mission #3

Co-Pls: M. Cronin, D. Zhang, A. Sutton, C. Meinig Postdoc: Samantha Wills

Testing the ability of Saildrone to make climate-quality measurements in the Tropics

Three 6-month missions:

- 1) NASA salinity study (SPURS II) and 125°W section (Sept.2017)
- 2) Equatorial sections 140°W, with and against currents (Oct. 2018)
- 3) Cluster of 4 drones, adaptive sampling around 140°W (June 2019)

- TAO buoys
- TAO buoy with CO₂ flux sensors
- NASA SPURS II Study Site
- Saildrone Mission #1
- Saildrone Mission #2
- Saildrone Mission #3

Co-Pls: M. Cronin, D. Zhang, A. Sutton, C. Meinig Postdoc: Samantha Wills

Testing the ability of Saildrone to make climate-quality measurements in the Tropics

Three 6-month missions:

- 1) NASA salinity study (SPURS II) and 125°W section (Sept.2017)
- 2) Equatorial sections 140°W, with and against currents (Oct. 2018)
- 3) Cluster of 4 drones, adaptive sampling around 140°W (June 2019)

- TAO buoys
- \bigstar TAO buoy with CO_2 flux sensors
- NASA SPURS II Study Site
- Saildrone Mission #1
- Saildrone Mission #2
- Saildrone Mission #3

Co-Pls: M. Cronin, D. Zhang, A. Sutton, C. Meinig Postdoc: Samantha Wills

Testing the ability of Saildrone to make climate-quality measurements in the Tropics

Three 6-month missions:

- 1) NASA salinity study (SPURS II) and 125°W section (Sept.2017)
- 2) Equatorial sections 140°W, with and against currents (Oct. 2018)
- 3) Cluster of 4 drones, adaptive sampling around 140°W (June 2019)

- TAO buoys
- \bigstar TAO buoy with CO_2 flux sensors
- NASA SPURS II Study Site
- Saildrone Mission #1
- Saildrone Mission #2
- Saildrone Mission #3

Co-Pls: M. Cronin, D. Zhang, A. Sutton, C. Meinig Postdoc: Samantha Wills

Testing the ability of Saildrone to make climate-quality measurements in the Tropics

Three 6-month missions:

- 1) NASA salinity study (SPURS II) and 125°W section (Sept.2017)
- 2) Equatorial sections 140°W, with and against currents (Oct. 2018)
- 3) Cluster of 4 drones, adaptive sampling around 140°W (June 2019)

Legend:

- TAO buoys
- TAO buoy with CO₂ flux sensors
- NASA SPURS II Study Site
- Saildrone Mission #1
- Saildrone Mission #2
- Saildrone Mission #3

Please advise: grid spacing, where, etc.

15 Sensor Packages 22 Essential Variables

Off-the-shelf Sensors (data put on GTS):

Air Temperature and Relative Humidity

Air Pressure SST (@0.6m)

Wind and Wind Stress (Bulk and covariance)

ADCP currents (upper 100m)

Air-sea heat fluxes (LW and SW radiation, bulk latent heat and sensible heat)

Waves (significant wave height and period)

BGC Suite

Air pCO2
Sea surface pCO2 and pH
Dissolved Oxygen
Chla, CDOM, Red Backscatter

Tropical Pacific TPOS Mission 1: San Francisco – San FranciscoSST

Two TPOS Saildrones launched from dock in San Francisco Bay, for return trips of the Equatorial Pacific. No ship time!

Tropical Pacific TPOS Mission 2017: San Francisco – San Francisco

Tropical Pacific TPOS Mission 2017: San Francisco – San Francisco

Tropical Pacific TPOS Mission #1, 2017: San Francisco – San Francisco

COMPARING AIR-SEA FLUX MEASUREMENTS FROM

A NEW UNMANNED SURFACE VEHICLE AND PROVEN PLATFORMS

DURING THE SPURS-2 FIELD CAMPAIGN

Zhang et al. 2019

Saildrone tracks around SPURS2 WHOI buoy

Saildrone Tracks over JPL MUR SST and HYCOM Surface Currents

Saildrone ADCP:

Equatorial Undercurrent (EUC) during the two crossings of Equator

TPOS Mission #2, 2018: Honululu - Honululu

7-day Saildrone tracks

Saildrone tracks over MUR SST and HYCOM currents

TPOS Mission #2, 2018: Honululu - Honululu

7-day Saildrone tracks

Conclusion

Saildrones have proven to be

- 1. Reliable, long-range, long-endurance, GREEN autonomous ocean observing platforms, especially ideal for observing fronts and adaptive sampling.
- 2. Capable of making measurements of 22
 Essential Ocean and Atmospheric Variables, including air-sea heat, momentum, CO2 fluxes, and upper ocean currents, critical for understanding air-sea interaction processes.

Future Work (transition to operation)

- 1. Test and Improve strategies in navigating and target-sampling complex ocean and atmospheric environments and processes. "Better use of forecast for observational campaigns"
- 2. Evaluate the benefits of saildrone data (high frequency simultaneous ocean and atmospheric measurements, crossing fronts, adaptive) to Numerical Weather Prediction (NWP) models. "Better diagnose model errors and improve forecasts"

NWP forecasts benefit Saildrone operation

2019 Joint Mission for Observing Arctic Sea Ice Environment *PMEL, UW/JISAO, ESR, UW/APL, and Saildrone, Inc.*

Chidong Zhang et al.

Through narrow Bering Strait Reaching the Melting Ice Edge Unescorted, Remotely Controlled 1000s km Away

NWP GFS wind forecast

HYCOM ocean current forecast

- Evaluate benefits of saildrone observations to NWP reanalysis and forecast
- Design Targeted Observations

BIASEs of T2m and Q2m in ERA5

21.0 Saildrone Q2m vs. ERA5 Q2m Specific Q (g/kg) 17.0 16.0 **15.0** 10 15 20 DEC OCT NOV

ERA5 along saildrone track

- Evaluate benefits of saildrone observations to NWP reanalysis and forecast
- Design Targeted Observations

BIASEs of T2m and Q2m in ERA5

ERA5 along saildrone track

