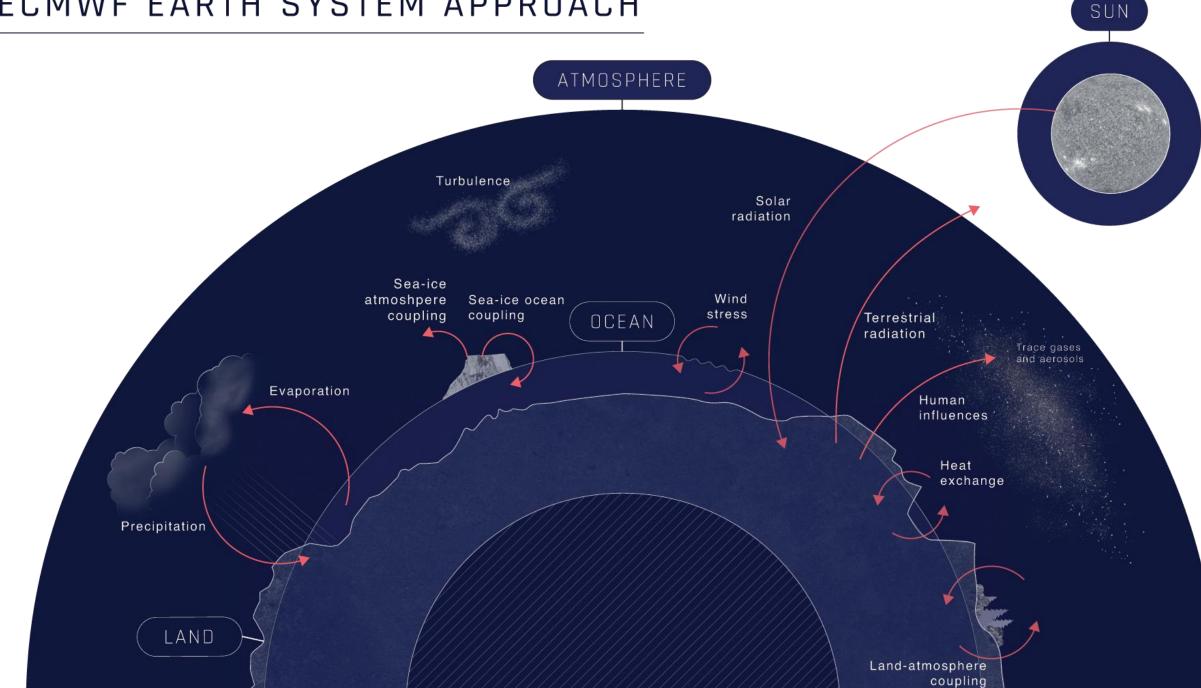
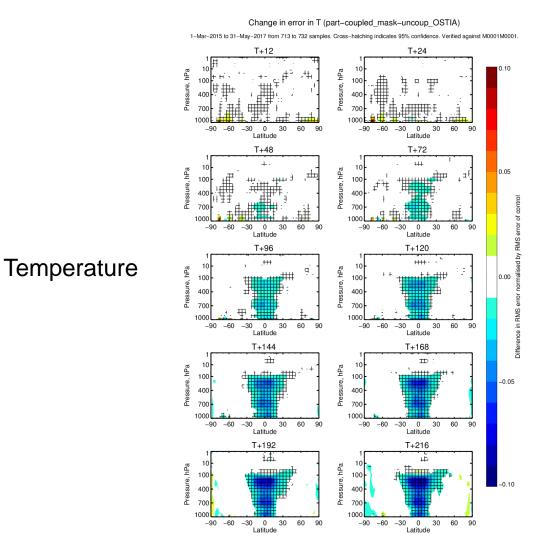
ECMWF research

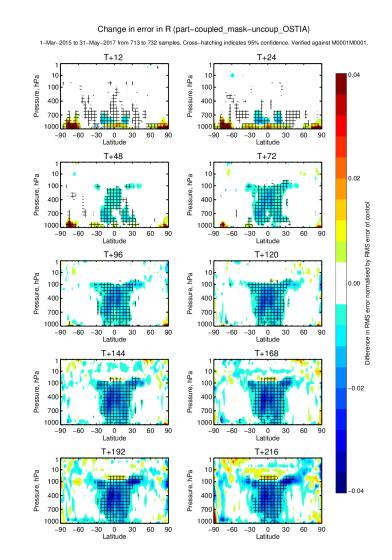
Andy Brown, Director of Research

© ECMWF June 5, 2019

The strength of a common goal:

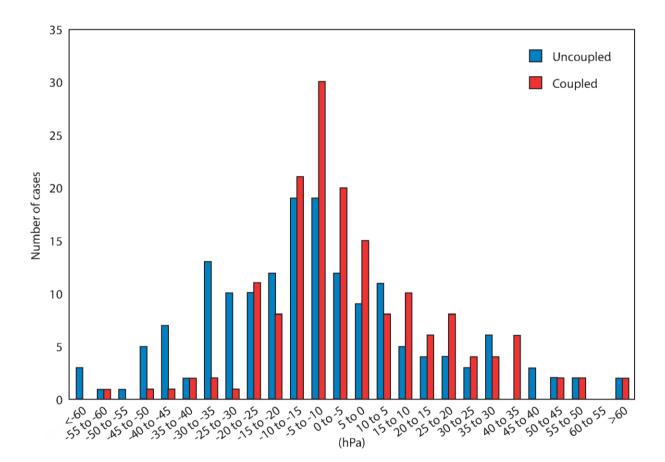

Strategic Objectives to 2025


Three pillars:

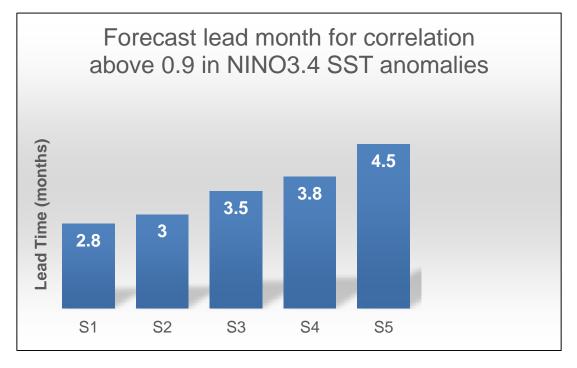

- Seamless earth system approach to modelling and analysing
- Ensemble prediction at 5km
- Scalability across the NWP chain

ECMWF EARTH SYSTEM APPROACH

45r1 – June 2018 0.25 degree Ocean coupled to HRES



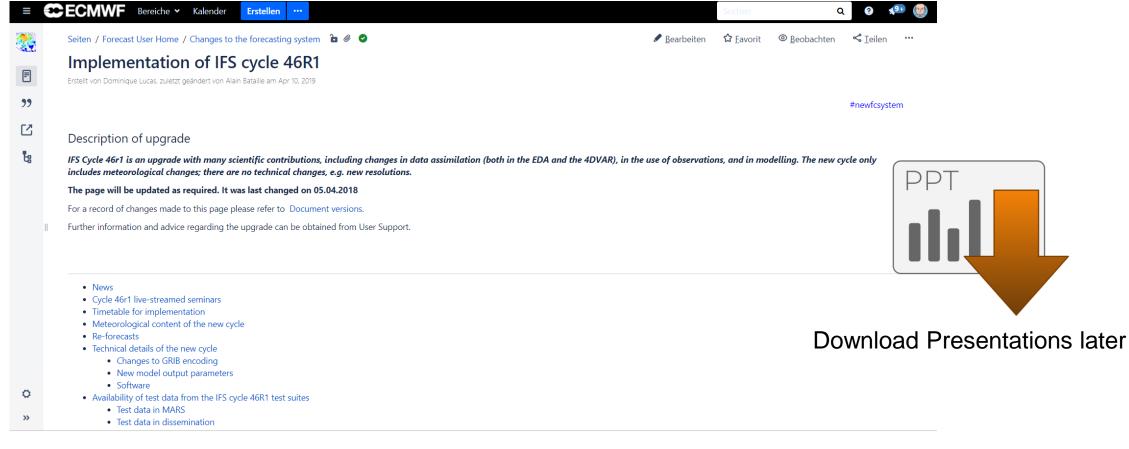
Humidity


Does the ocean coupling actually matter for a large sample of TC's?

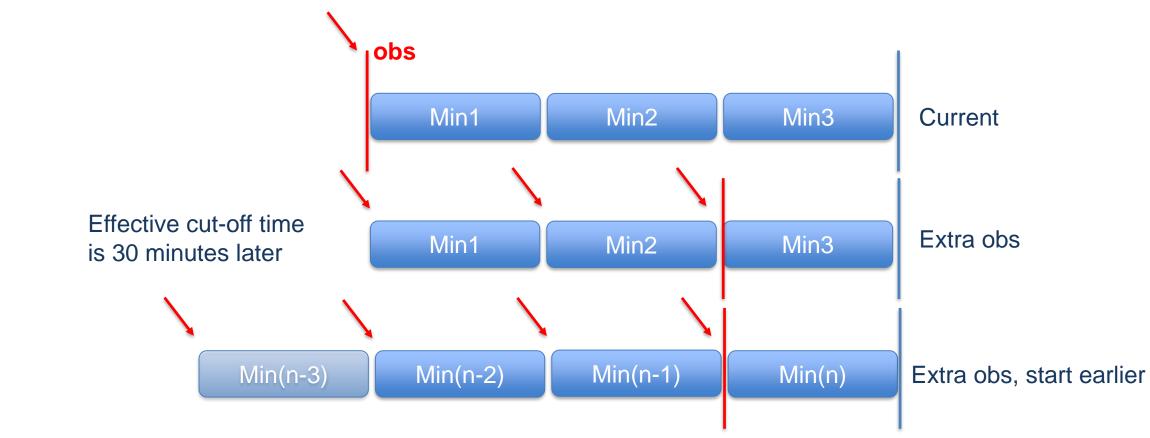
- Distribution of 7-day TC intensity forecast errors for coupled and uncoupled high-resolution forecast experiments.
- The experiments cover the period of March 2015 to June 2017 and were carried out over all basins for a total of 163 TCs.
- The number of over predictions is reduced in the coupled forecasts compared to the uncoupled forecasts.

Seamless modelling: SEAS5

- Most "seamless" system so far
 - Horizontal (Tco319/ORCA25) and vertical resolution (L91/L75) are the same as ENS extended.
 - SEAS5 only differs from the 43r1 ENS extended (monthly) system when testing demonstrated clear improvement in forecast skill or mean state.
 - Different non-orographic gravity wave drag settings (important for QBO) since adopted for all timescales from 45r1
 - Seasonal testing now an integral part of cycle development

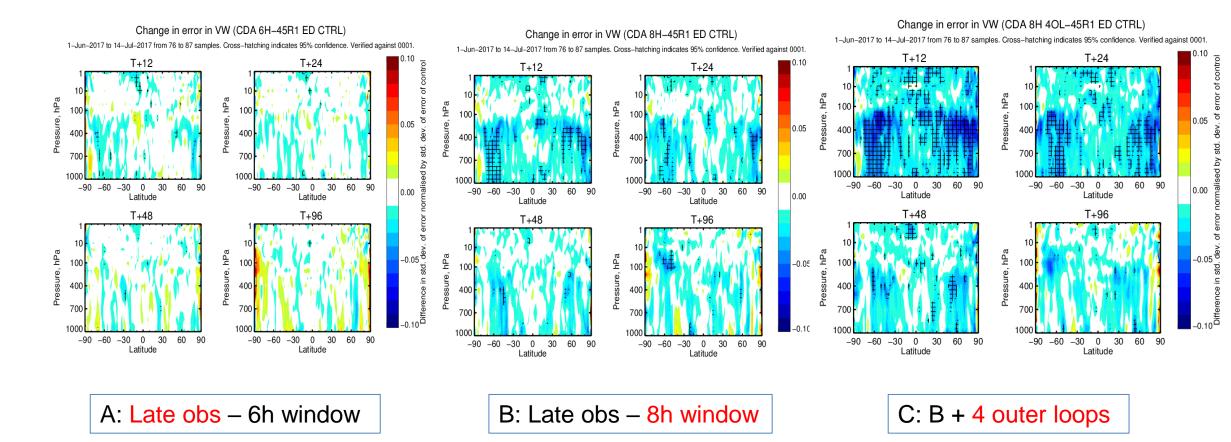


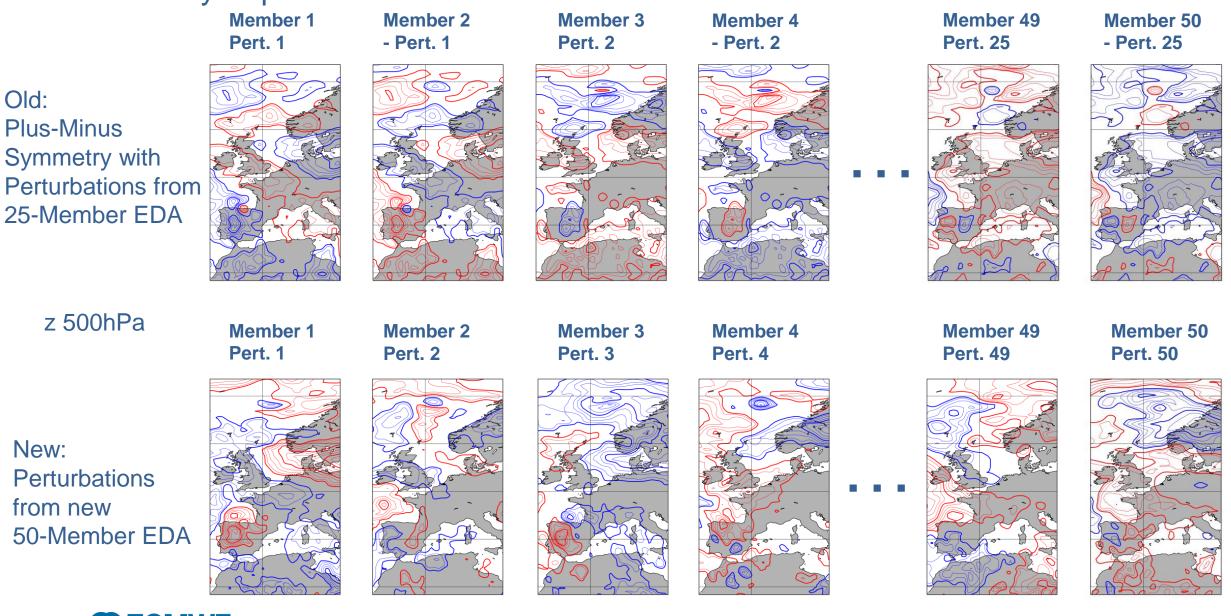
Information to new cycle 46R1


All information is published on the website

https://confluence.ecmwf.int/display/FCST/Implementation+of+IFS+cycl

<u>e+46R1</u>

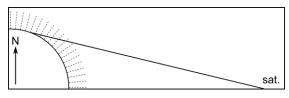

Continuous data assimilation


- Key point: Start running data assimilation **before** all of the observations have arrived:
 - 1. Most of the assimilation is removed from the time critical path
 - 2. Configurations which were previously unaffordable can now be considered

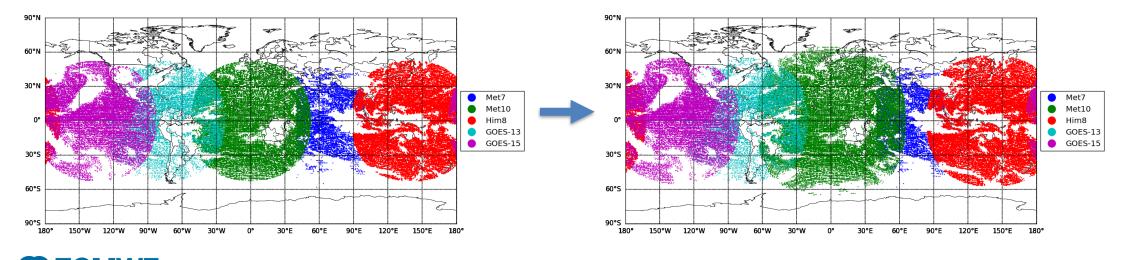
Continuous DA

• Preliminary results (Wind Vector error stdev, 1/6/17 – 14/7/17)

New way to perturb the ensemble initial conditions for 50 Ensemble Members

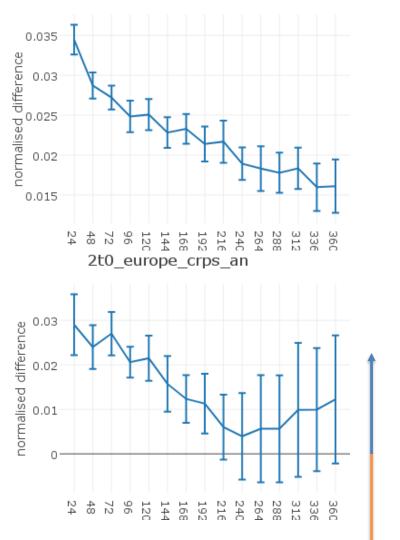


Geostationary radiances


Diagnosed inter-channel error correlations for the water vapour channels on SEVIRI, AHI and ABI. E.g.

$$\mathbf{R}_{SEVIRI} = \begin{pmatrix} 0.46 & 0.20 \\ 0.20 & 0.30 \end{pmatrix} \qquad \mathbf{R}_{AHI} = \begin{pmatrix} 0.55 & 0.43 & 0.22 \\ 0.43 & 0.46 & 0.31 \\ 0.22 & 0.31 & 0.35 \end{pmatrix}$$

Slant path radiative transfer – this improves forward-modelling at high zenith angles:



Increased use of data at high zenith angles beyond 60° (assisted by the slant path processing):

Impact of 1 hourly radiation on ENS

2t0_tropics_crps_an

			n.h	em	s.h	em	tro	pics
			rmsef	crps	rmsef	crps	rmsef	crps
an	z	100						
		250						
		500						
		850						
	msl							
	t	100						
		250						
		500						
		850						
	ff	100						
		250						
		500						
		850						
	r	200						
		700						
	2t							
	10ff@sea							
	swh							
	mwp							
оb	z	100						
		250						
		500						
		850						
	t	100						
		250						
		500						
		850						
	ff	100						
		250						
		850				**********		
	r	200						
		700						
	2t							
	2d							
	tcc							
	10ff							
	tp							
	swh							

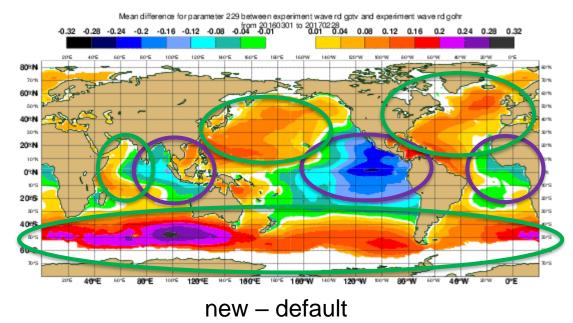
1 hourly

radiation

is better

1 hourly

radiation


is worse

Modified wave physics

The wave model has the tendency to produce

- too much swell in the deep Tropics
- too little waves in the stormy/windy areas.

The modified wave physics, based on the work of Ardhuin et al. 2010 generally addresses this issue:

<u>Stand alone hindcast</u> for 1 year, forced by ECMWF analysis winds: Mean Significant wave height difference (m)

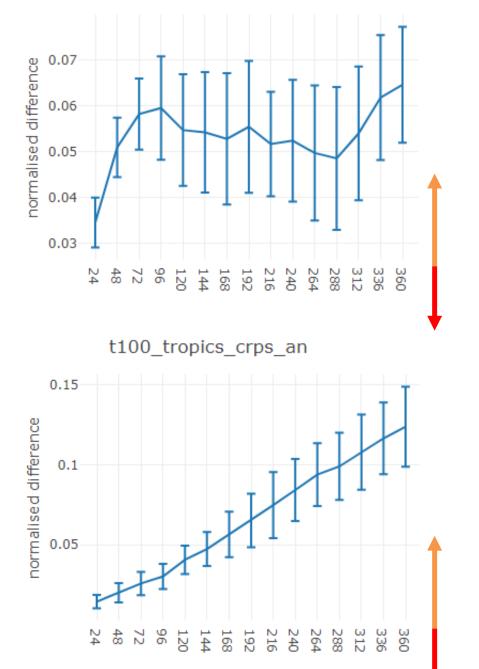
46r1 ENS scorecard

https://confluence.ecmwf.int/display/FCST/Implement ation+of+IFS+cycle+46R1

	n.hem		n.hem s.hem		tropics		europe		n.amer		e.asia		arctic		antarctic		
	rmsef			rmsef crps		rmsef crps		rmsef crps		rmsef crps		rmsef crps		rmsef crps		rmsef crps	
an z	100																
	250																
	850																
msl																	
t	100																
	250																
	500																
	850																
ff	100																
	250																
1	500																
1	850																
r	200																
2t																	
10ff@sea																	
swh																	
mwp														_			
obz	100																
1																	
1																	
t																	
"																	
r																	
2t																	
2 d			1														
tcc												0.000.0					
10ff																	
tp																	
swh																	

Based on about 240 model runs for verification against analysis and about 290 model runs for verification against observations Improvements of 0.5-4% for most parameters, levels, and forecast lead times

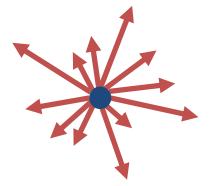
Further ahead

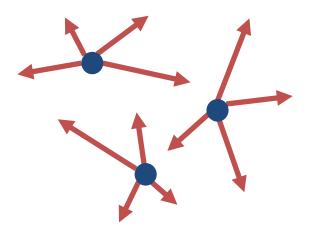

- 47r1
- Suites for Bologna
- Exploitation of existing and new observations
- Coupled modelling and DA
- Scalability and taking advantage of new technology

137 levels vs 91 levels ENS scores

Experiments: TCo639, 10 members, 91 levels, June-August, 44 inidates

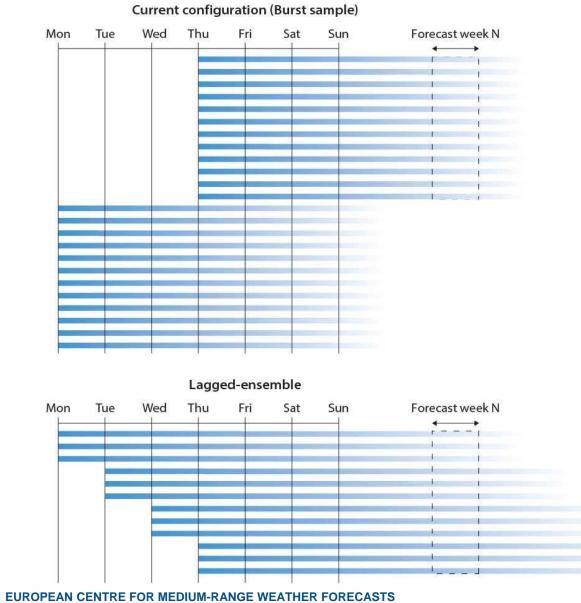
			n.ł	nem	s.h	em	troj	pics
			rmsef	crps	rmsef	crps	rmsef	crps
an	z	100						
		250						
		500						
		850						
	msl							
	t	100						
		250						
		500						
		850						
	ff	100						
		250						
		500						
		850						
	r	200						
		700						
	2t							
	10ff@sea							
	swh							
	mwp							
оЬ	z	100						
		250						
		500						
		850						
	t	100						
		250						
		500						
		850						
	ff	100						
		250						
		500						
		850						
	r	200						
		700						
	2t							
	2d							
	tcc							
	10ff							
	tp							

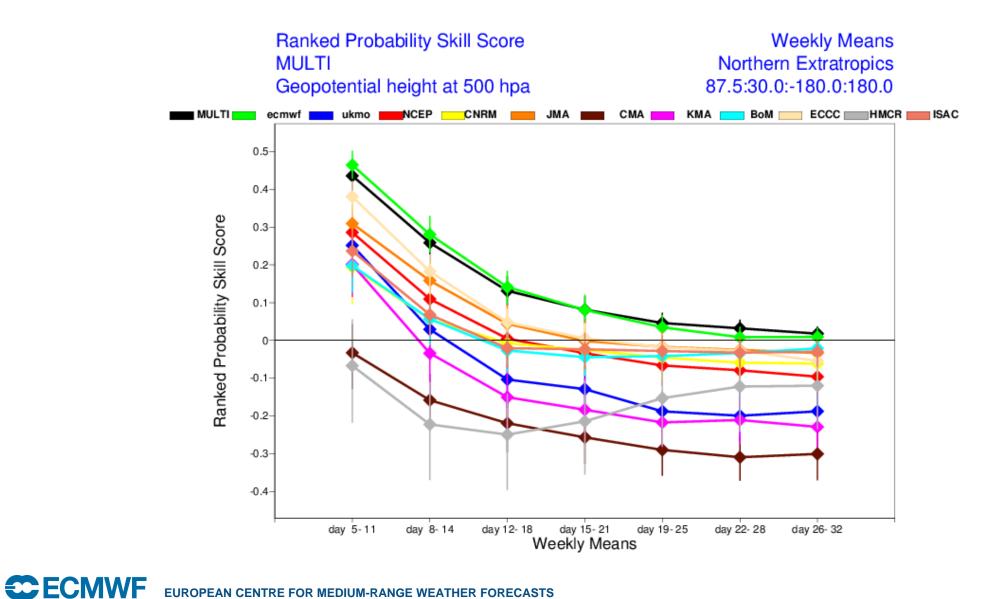

t100_n.hem_crps_an


Re-centring with multiple centre analyses

Here: centre on a small number of HRES like analyses with different satellite obs selection for thinning. No model unc. representation and obs perturbations in the centre analyses to limit sampling uncertainty (see Hólm, 2018 for details).

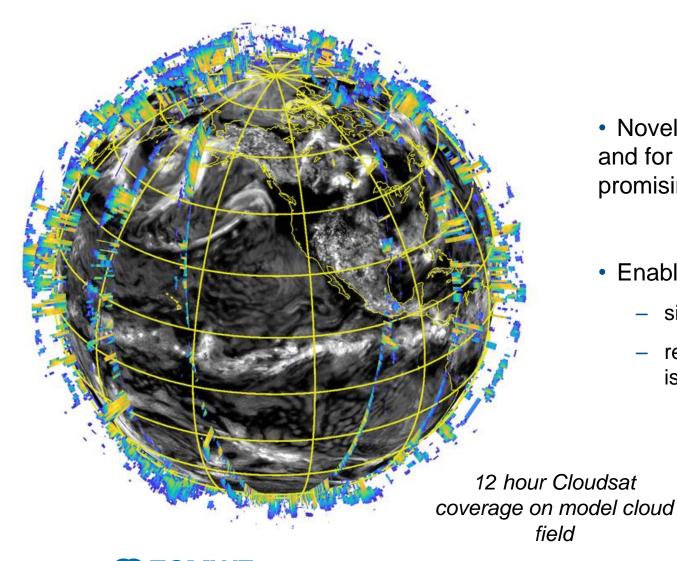
Re-centre perturbations on single Analysis


Re-centre perturbations on multiple Analyses

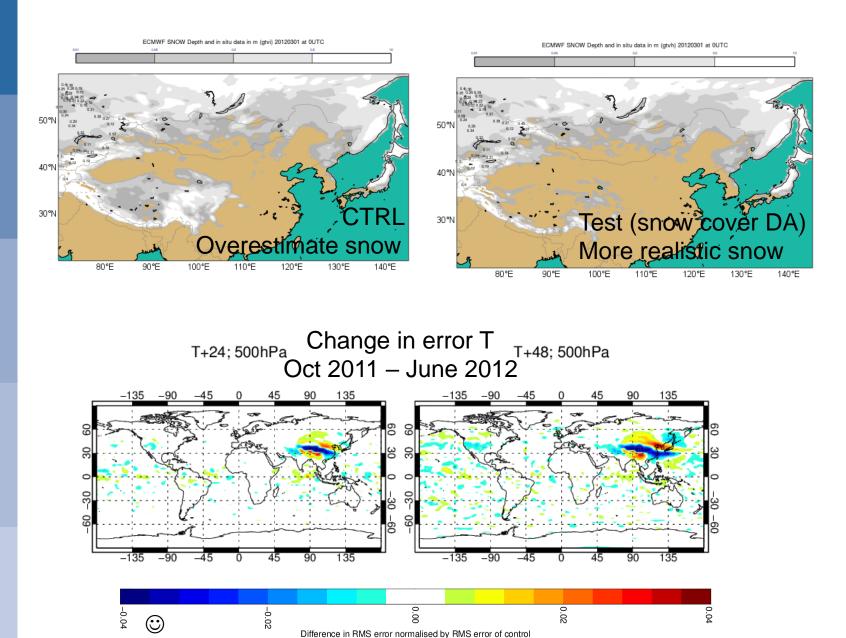

TCo639 experiments Analysis + ENS, verified against Oper

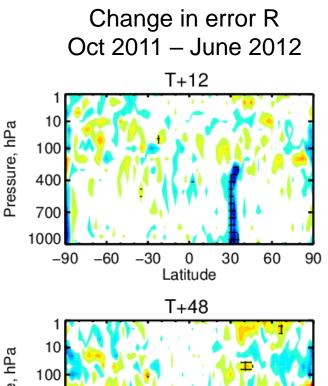
		n.hem		s.h	em	tropics		
		rmsef	crps	rmsef	crps	rmsef	crps	
an z	100							
	200							
	500							
	850							
msl								
t	100							
	200							
	500							
	850							
ff	100							
	200							
	500							
	850							
r	200							
	700							
2t								
10ff@sea								
swh								
mwp								

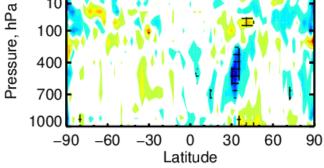
Extended range suite design



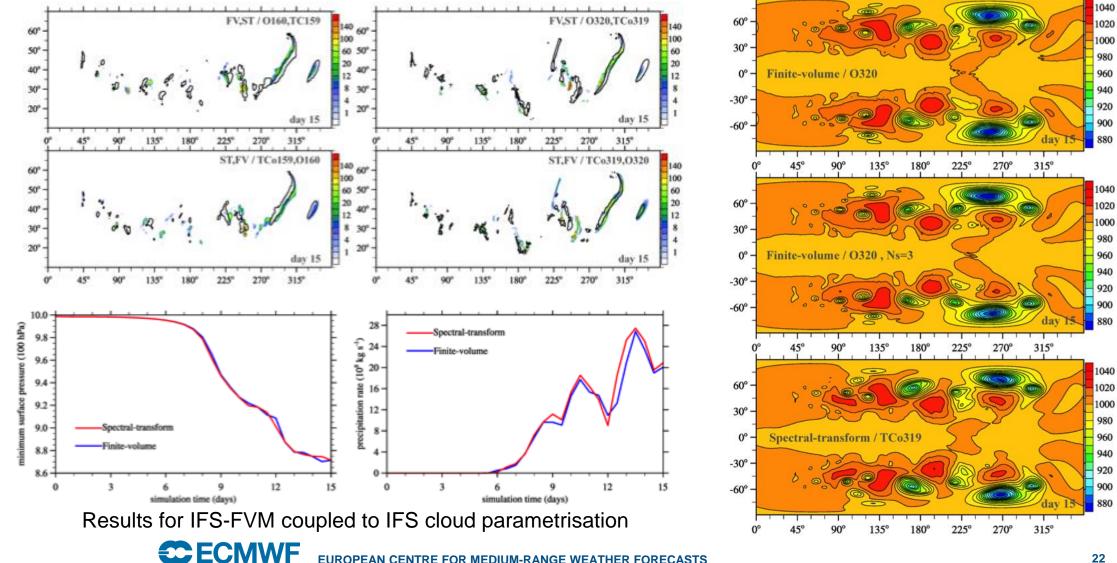
Collaborations and serving community: S2S project


First-ever direct 4D-Var assimilation of space-borne cloud radar and lidar in NWP

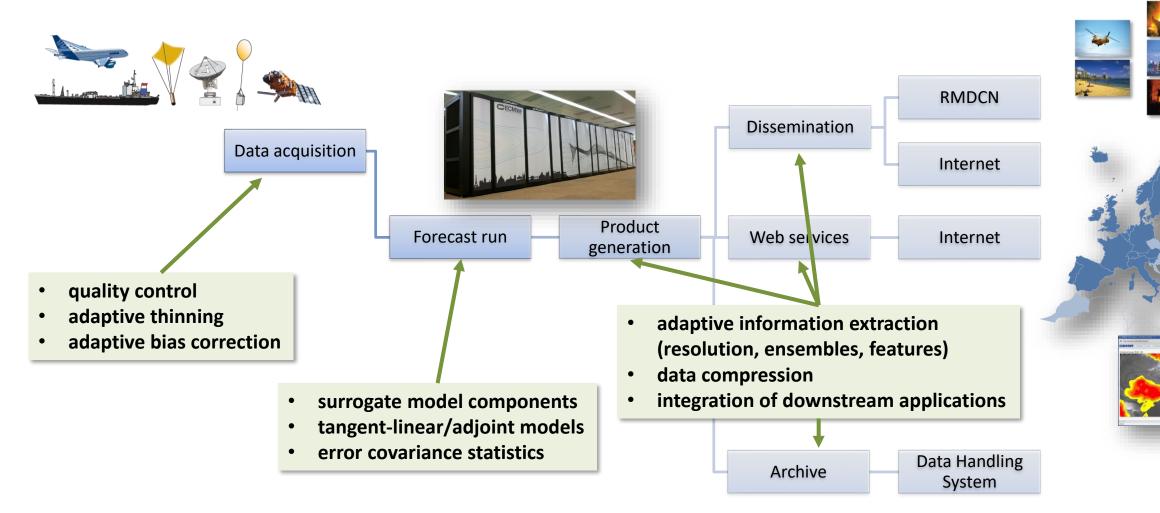

 Novel observation type: challenge to implement and for 4D-Var linearized cloud physics, but promising results


- Enables observation monitoring:
 - simplify model evaluation
 - real-time monitoring could help detect instrument issues faster than observations alone

Snow cover data assimilation over the HTP



Impact on albedo and momentum \rightarrow Modifies the jet circulation



Finite-Volume Module of IFS: moist-precipitating dynamics and coupling to **IFS** physical parametrisations

Investigating the potential of machine learning

The strength of a common goal:

Strategic Objectives to 2025

Three pillars:

- Seamless earth system approach to modelling and analysing
- Ensemble prediction at 5km
- Scalability across the NWP chain
- Good progress against strategy
- Prediction quality improving
- More to come!

