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Q1. How reliable are land surface models (LSMs) Q2. How can machine-learning techniques assist
under a changing climate? hydro-meteorological forecasting?
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= Models have difficulties in representing hydro-climatic
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HTESSEL, highlights the need for further improved and
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expanded process representations in current models.
Work Plan 2: Generating gridded soil moisture data
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2. Models show faster performance decline
In arid regions
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Predictor

= Potential difficulties in LSM predictions are found in semi- .
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arid regions, where a regime change between energy- and
water-limited conditions is expected.
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