## How can deep-learning assist physical modeling and forecasting?

Sungmin O (sungmino@bgc-jena.mpg.de) and Rene Orth Max Planck for Biogeochemistry, Jena, Germany





using 24-years streamflow data from 161 catchments in Europe







## Work Plan 1: Post-processing of weather forecasts with machine-learning techniques

- Machine-Learning can learn patterns of model-observation mismatch and correct biases in physical model outputs.
- It can also improve understanding of model weaknesses, e.g., through sensitivity analysis to determine the patterns in model errors.

Models have difficulties in representing hydro-climatic regime shifts; e.g., energy- to water-limited conditions

 Relatively robust performance of the most complex model, HTESSEL, highlights the need for further improved and expanded process representations in current models.

## 2. Models show faster performance decline in arid regions





## Work Plan 2: Generating gridded soil moisture data from a machine learning-based data-driven model

A data-driven model will be developed and its extrapolation capacity will be investigated, to generate spatio-temporal soil moisture fileds from point measurements.

Potential difficulties in LSM predictions are found in semiarid regions, where a regime change between energy- and water-limited conditions is expected.

