Taming the butterfly effect to reach
sub-seasonal and seasonal predictability
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Weather prediction is an initial value problem

The jth forecast starting from data/time (d,0), is given by the time integration

e (d,T)=e (d,0) +TﬁA(ej 1)+ P(e,,t) + P (e ,1)]dt

of the model equations starting from thdlh initial conditions

e (d,0) = &,(d,0) +de (d,0)

NSV
de (d,0)=3 & [a,, BV(d,0)+b,, BV (d- 2+2d)]

area k=1

The perturbed model tendency is defined at each grid point by
P (e.t;/.f,p)=r,(t;/,F)P(t;/,f,p)

wherer;(t;u ,<) Is a random number.

Sant’Anna

g“ﬂl*; School of Advanced Studies - Pisa Roberto Buizza 1 ECMWF Annual Seminar 2019



Models are based on the fluid eq.
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Proper initialization is essential to go from obs to fcs

Aproximately 20 million observations
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assimilation

Inliflaill Model next step Intermediate
conditions results

e The atmosphere is Laws of physics
/f""lll‘“\ T ;

p e divided into about one
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The atmosphere is a chaotic system

Ed Lorenz (1969): 3-d model for a two-
dimensional fluid layer uniformly warmed from
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1969 Lorenz: t he range@mweeksp!

0 the range of predictability (defined as the time interval within which the errors in
prediction do not exceed some pre-chosen magnitude) is about 16.8 dayso

0. (there is) little hope for those who would extend the two-week goal to one montho
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Sensitivities: butterflies and hawkmoths

Theobutt er f:bepsitieefdédpendenad to initial condition
errors, or 1 n other worenxt?$963xJA8)C |

Thd adavk mot h : sersitive depeddence to model
approximations (Frigg et al 2014, POS)

How can we generate skilful fcs taking into account initial and model uncertainties,
and the fact that complex models show chaotic behaviours?
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From a deterministic to a pt

How can we move forward and go past 2 weeks?
We could reframe the forecast problem in probabilistic terms.
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A probabilistic approach leads to more valuable info

Consider users that need to decide Surface 2 meter temperature

anom<-8.0 (3M running mean)
Europe N Africa jat ssow 700, lon 100t 28.0) —eem. ENS

to take an action to protect against 01 dom0t 1201C 10 30141130 12L7G -6
a loss. For them, it is important to T
to discriminate between the

occurrence and non-occurrence of wof |/ Kp ®wM
events.

o8 ! \
Ensemble-based probabilistic j_\‘\‘\ENS PROB FC
forecasts discriminate better

than single, deterministic ones.
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Probabilistic forecasts are more consistent
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Prababilistic forecasts i den

Furthermo re, pro babilistic ECMWF Monthly Forecast, 2mtm in lower tercile , Area:Northern Extratropics
. . Day 19-25 20170725-20190725
forecast allow to identify BrSc=0.225 LCBrSkSc= 0.01 Uncertainty=0.227
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From a deterministic to a probabilistic thinking

How could we estimate and evolve probabilities?
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One possibility would be to integrate a Liouville eq.

Consider an N-dimensional system, whose evolution is described by:
(1) £ @ Lo n 4L
The Liouville Eq. (LE) is the continuity eq. for the pdf of the state vector X(t):

@) r=o 1
1o T ®

' Gy o] n

The LE Is an inhomogeneous quasi-linear (linear in the first derivatives of ' )
eg. with dependent variable ' =h and independent variables (X,t). The LE
solution depend on the system equations (1) (Ehrendorfer 1995, MWR).
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The Liouville equation was integrated for a 3D system

Ehrendorfer (1995) applied the LE to simple 3-dimensional system, to
compute the evolution of the pdf ' .
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[(b)}] the top of the marginal at ¢ = 50 [¢ = 0] has been omitted to enhance the vertical resolution.
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Could we integrate the LE for a high-dim system?

Ehrendorfer (1995).
¢ SY LIS NI O dzNB Temperature

A fié tLBEis central tothe issue of j
how Iinitial-state uncertainties and
model errors affect the skill of

. PDF(t)
numeri c al weat her f ore

A By considering realistic systems, he
concludedthatn t he hi gh di me
the phase space encountered in the case
of realistic meteorological models seems
to prohibit this approacho PDF(0)

Forecast time
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The process revisited: from obs to fcs via ENS

Ensembles should aim to simulate all sources of errors.

Mo d e | uncert alil

Aproximately 20 million observations
Observation
Data Fi
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#) uncertainties

EC(UK)-EC(EC) Z500 1996-12-17 12h t+120

Sensitivity to initial (% ) and model (=g

UK(UK)-EC(EC) Z500 1996-12-17 12h t+120

Focus in the early 1990s was on
estimating initial uncertainties.

An estimate of the relative role of initial
and model uncertainties came from
Harrison et al (1999), who compared:

A ECMWF-from-ECMWF-ICs [EC(EC)]
A EC(UK)

A UK(UK) and

A UK(EC).

They concluded that up to fc day 5,
Initial differences dominated.
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St mul atir on of the 1 niti1 al PD

Three main classes:

a) Lagged - Based on the hypothesis )
that time-lagged analyses have the A Lagged Average Forecast
statistics of analysis errors

A Ensemble Kalman Filter

b) Kalman i Inspired by the Kalman A Ensemble Transformed Kalman Fliter
Filter A ET with Rescaling
A Ensemble Data Assimilation
c) Reduced sampling - Inspired by A Bred vectors
the analysis cycle and trying to A Singular vectors
identify leading error-growth A EOE
directions A STOCH
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Simulation of the initial PDF: 9 methods

___[Method _____ |Drivingidea

LAF Lagged Average Fcs Differences between analyses approximate analysis errors

EnKF Ensemble Kalman An approximation of the Kalman Filter that increases accuracy as
Filter ensemble size increases; can take model uncertainties into account

ETKF Ens. Transformed KF BVs transformed using ETKF ideas

ETR ET with Rescaling An extension of breeding, via ETKF plus rescaling

EDA Ensemble of Data Uses ideas from the EnKF, but with each ensemble member being
Assimilation generated by an independent 4D-Var

BV Bred Vectors Mimic the analysis cycle

SV Singular Vectors Assumes that the analysis error components fastest growth over a

finite time interval are the most relevant
EOF Emp. Orth. Functions BVs transformed using an EOF method
STOC Stochastic Scheme Initial perturbations are generated using a stochastic scheme
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An example of initial spread (10 Jan 2013)
ECMWF (SV+EDA) NCEP (ETR) ECCC (EnKF)
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