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The j-th forecast starting from data/time (d,0), is given by the time integration

of the model equations starting from the j-th initial conditions

The perturbed model tendency is defined at each grid point by

where rj(t;ʊ, )˂ is a random number.
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Outline
Weather prediction is an initial value problem
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These terms simulate the 
impact on the state variables of 
the physical processes (e.g. 
radiation, moist processes, 
turbulence, impact of sub-grid 
scale processes, ..).

Models are based on the fluid eq.
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Proper initialization is essential to go from obs to fcs
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The atmosphere is a chaotic system
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Ed Lorenz (1969): 3-d model for a two-

dimensional fluid layer uniformly warmed from 

below and cooled from above.
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1969, Lorenz:  the range of predictability is   ╔2 weeks 

ó.. the range of predictability (defined as the time interval within which the errors in 

prediction do not exceed some pre-chosen magnitude) is about 16.8 daysô

ó.. (there is) little hope for those who would extend the two-week goal to one monthô 
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Sensitivities: butterflies and hawkmoths
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Theóbutterfly effectô: sensitive dependence to initial condition 

errors, or in other words a óchaotic behaviourô (Lorenz 1963, JAS)

The óhawkmoth effectô: sensitive dependence to model 

approximations (Frigg et al 2014, POS)

How can we generate skilful fcs taking into account initial and model uncertainties, 

and the fact that complex models show chaotic behaviours?
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From a deterministic to a probabilistic thinking 
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How can we move forward and go past 2 weeks?

We could reframe the forecast problem in probabilistic terms.
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A probabilistic approach leads to more valuable info
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Consider users that need to decide 

to take an action to protect against 

a loss. For them, it is important to 

to discriminate between the 

occurrence and non-occurrence of 

events. 

Ensemble-based probabilistic 

forecasts discriminate better 

than single, deterministic ones. 
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Probabilistic forecasts are more consistent
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For an effective management of 

weather risk, consistency 

between consecutive forecasts 

valid for the same verification 

time.

Ensemble-based, probabilistic 

forecasts, are more consistent 

than deterministic fcs.

ECMWF ENS-con

UKMO ENS-con

ECMWF ensemble-mean

UKMO ensemble-mean

(Zsoter et al 2009)
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Probabilistic forecasts identify predictable events 
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Furthermore, probabilistic 

forecast allow to identify 

predictable events.
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From a deterministic to a probabilistic thinking 
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How could we estimate and evolve probabilities?
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Consider an N-dimensional system, whose evolution is described by: 

(1)

The Liouville Eq. (LE) is the continuity eq. for the pdf of the state vector X(t):

(2)

The LE is an inhomogeneous quasi-linear (linear in the first derivatives of ′) 
eq. with dependent variable ′╧ȟὸand independent variables (X,t). The LE 

solution depend on the system equations (1) (Ehrendorfer 1995, MWR). 

One possibility would be to integrate a Liouville eq.
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Ehrendorfer (1995) applied the LE to simple 3-dimensional system, to 

compute the evolution of the pdf ′. 

The Liouville equation was integrated for a 3D system
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Ehrendorfer (1995):

Áñé the LE is central to the issue of 

how initial-state uncertainties and 

model errors affect the skill of 

numerical weather forecasts ..ò

ÁBy considering realistic systems, he 

concluded that ñthe high dimensionality of 

the phase space encountered in the case 

of realistic meteorological models seems 

to prohibit this approachò 

Could we integrate the LE for a high-dim system?
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The process revisited: from obs to fcs via ENS

Ensembles should aim to simulate all sources of errors. 
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Model uncertainties

Observation

errors

ICsô uncertainties
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Sensitivity to initial (      ) and model (       ) uncertainties
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Focus in the early 1990s was on 

estimating initial uncertainties.

An estimate of the relative role of initial 

and model uncertainties came from 

Harrison et al (1999), who compared:

ÁECMWF-from-ECMWF-ICs [EC(EC)]

ÁEC(UK)

ÁUK(UK) and 

ÁUK(EC). 

They concluded that up to fc day 5, 

initial differences dominated. 
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Simulation of the initial PDF: 3 óclassesô, 9 methods 
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Three main classes:

a) Lagged - Based on the hypothesis 

that time-lagged analyses have the 

statistics of analysis errors

b) KalmanïInspired by the Kalman 

Filter

c) Reduced sampling - Inspired by 

the analysis cycle and trying to 

identify leading error-growth 

directions

ÁLagged Average Forecast

ÁBred vectors

ÁSingular vectors

ÁEOF

ÁSTOCH

ÁEnsemble Kalman Filter

ÁEnsemble Transformed Kalman FIlter

ÁET with Rescaling

ÁEnsemble Data Assimilation



Roberto Buizza ïECMWF Annual Seminar 2019

Simulation of the initial PDF: 9 methods 
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Method Driving idea

LAF Lagged Average Fcs Differences between analyses approximate analysis errors

EnKF Ensemble Kalman 

Filter

An approximation of the Kalman Filter that increases accuracy as 

ensemble size increases; can take model uncertainties into account

ETKF Ens. Transformed KF BVs transformed using ETKF ideas

ETR ET with Rescaling An extension of breeding, via ETKF plus rescaling

EDA Ensemble of Data 

Assimilation

Uses ideas from the EnKF, but with each ensemble member being 

generated by an independent 4D-Var  

BV Bred Vectors Mimic the analysis cycle

SV Singular Vectors Assumes that the analysis error components fastest growth over a 

finite time interval are the most relevant

EOF Emp. Orth. Functions BVs transformed using an EOF method

STOC Stochastic Scheme Initial perturbations are generated using a stochastic scheme
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An example of initial spread (10 Jan 2013)
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T0

+48h


