WORKSHOP ON

Stratospheric predictability and impact on the troposphere

Welcome

18–21 NOV 2019

ECMWF

#StratosphericWS
Causes and fixes for stratospheric temperature biases in IFS and their impact on predictability

Inna Polichtchouk, Peter Bechtold, Michail Diamantakis, Richard Forbes, Robin Hogan, Sylvie Malardel, Irina Sandu, Tim Stockdale, Filip Vana, Frederic Vitart, Nils Wedi

20 November 2019
Stratosphere in IFS: Temperature biases in 46R1 against ERA-5

Annual mean

Difference: Zonal Mean Average T (n=4)
Climate Forecast (h5ju) - ERA5
4 Dates: 20000801, ..., Averaging Period Start: 200009, Length: 12 Months

Warm bias
Biases even worse for older operational cycles!

Cold bias

TCo639L137: 4 x 1yr forecasts
Stratosphere in IFS: Temperature biases in 46R1 against ERA-5

1) Cold polar lowermost stratosphere (LMS) bias of ~5K, maximizing in the Northern Hemisphere summer.

Related to excessive water vapor and too much longwave cooling in this region (Stenke et al., 2008).
Stratosphere in IFS: Temperature biases in 46R1 against ERA-5

2) Cold mid- to lower stratosphere bias of ~3K. Worse at higher horizontal resolution.
1) Cold polar LMS bias: Historical perspective

Cold bias was present in IFS already in 1995. Bias was alleviated at T42L31 resolution by switching to **semi-Lagrangian dynamics** (SL) → water vapor advection better in SL scheme.

The cold tropopause bias is common to many models (e.g., Boer et al. 1992):

It is rather remarkable that all models simulate temperatures which are too cold in regions 1, 3, and 5 given the various numerical methods, resolutions, and physical parameterizations used in the different models. Such common model deficiencies are termed “systematic,” “tenacious,” “insensitive,” “universal,” or “essential.” Their existence suggests that all models suffer from a common deficiency in some aspect of their formulation.
1) Cold polar LMS bias: What else controls it?

- Switching off quasi-monotone filter and higher order SL interpolation in the IFS at low horizontal resolutions < TCo255 (Diamantakis, 2014).

- Modest increase in the vertical resolution at low horizontal resolution (Pope et al., 2000).

- Move to isentropic coordinates in the stratosphere (Chen & Rasch, 2012).
1) Cold polar LMS bias: Resolution sensitivity in IFS

- For horizontal resolutions higher than TCo319 (36km) **not much improvement**.
- For **vertical resolutions** higher than 400m (or L137) also no improvement.

TCo319-TL255 (36km-80km)  
TCo639-TCo319 (18km –36km)
1) Cold polar LMS bias: Why still there at high resolution and in medium-range forecasts?

- At 9-18km horizontal resolution and 300m vertical resolution, hygropause gradients should be well resolved and numerics much less diffusive.

TCo639L137 (18km horiz. res.)

TCo1279L137 (9km horiz. res.)
1) Cold polar LMS bias: Analysis too moist

- ECMWF analysis too moist in the lowermost polar stratosphere when compared to Microwave Limb Sounder (MLS).

- Similar conclusions from comparison to aircraft observations (Dyroff et al., 2015) and to high vertical resolution Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) observations (see talk by Wolfgang Woiwode).

Shepherd et al. (2018, TM)
1) Cold polar LMS bias: Impact of fixing the bias on the troposphere

- Artificially reducing specific humidity seen by the radiation scheme eliminates the bias.

- Removing the bias improves **extended range** forecast skill scores (RPSS) in Europe in the troposphere in weeks 2-3.

**Figure courtesy:** Frederic Vitart
1) Cold polar LMS bias: Summary

- A cold polar lowermost stratosphere bias exists in many global models.
- Present in the IFS at all resolutions and all forecast lead times.
- An overestimate of water vapour in the lowermost stratosphere leads to too strong LW cooling.
- Reasons for the temperature and water vapour bias:
  - **Analysis too moist** (due to lack of constraint from observations): Affects medium-range
  - **Water vapour leakage** from moist troposphere to dry stratosphere
- Fixing the bias has a positive impact on tropospheric predictability over Europe in extended-range forecasts.
Stratosphere in IFS: Temperature biases in 46R1 against ERA-5

Difference: Zonal Mean Average T (n=4)
Climate Forecast (h5ju) - ERA5
4 Dates: 20000801, ... Averaging Period Start: 200009 Length: 12 Months

TCo639-TCo319 (18km –36km)

Difference: Zonal Mean Average T (n=4)
Climate Forecast (h5ju) - (hap9)
4 Dates: 20000801, ... Averaging Period Start: 200009 Length: 12 Months
2) Cold mid- to lower stratosphere bias: Horizontal resolution sensitivity

- Stratosphere cools in the global mean with increase in horizontal resolution $\rightarrow$ biases worse. Affects all forecast ranges, from medium to seasonal.

- **Resolved dynamics** the culprit. Forecasts with no physical parametrizations, show the same horizontal resolution dependence.

Verification against analysis

![Diagram showing temperature changes in the stratosphere with different horizontal resolutions.](image)
2) Cold mid- to lower stratosphere bias: Kinetic energy spectrum

At higher horizontal resolution, more energy in the **divergent** part of the spectrum → more of **gravity wave** spectrum is resolved.
2) Cold mid- to lower stratosphere bias: Role of gravity waves

- **Filter** gravity waves out $\rightarrow$ reduces horizontal resolution sensitivity in the mid- to lower stratosphere.

- Total wavenumbers $40<N<300$ (wavelengths: 100-1000km) cool at high TCo1279 horizontal resolution. Such scales are well resolved $\rightarrow$ **not** due to truncation errors in the horizontal direction.

---

**Figure:**

- **High – Low:**
  - Average over 31 forecasts in July at 10-day lead time.

**Source:** Polichtchouk et al. (2019, TM)
2) Theoretical considerations: horizontal to vertical resolution aspect ratio

- Aspect ratio relevant for balanced quasi-geostrophic dynamics (Lindzen & Fox-Rabinovitz, 1989) and inertia-gravity wave dispersion relation

\[
\frac{\Delta z}{\Delta x} \sim \frac{f}{N} \quad \Delta z \sim 200 \text{ m}
\]

Other arguments:
- **Stratified turbulence** develops shear layer of thickness (e.g., Waite & Bartello, 2004)

\[
L_b \equiv \frac{2\pi U}{N} \quad \text{In the stratosphere, } L_b \sim 1\text{km, need } \Delta z \sim 200\text{m to resolve properly.}
\]

- **Gravity wave propagation** through the stratosphere:

  Dispersion relation (medium-frequency):

  \[
  |\lambda_z| \sim |c-U|/N
  \]
2) Theoretical considerations: Gravity wave propagation

- Spatial distribution of resolution sensitivity likely a result of background conditions.
  Large increase in $N$ and small changes to $U$ in the tropical lower stratosphere.

\[ |\lambda_z| \sim |c-U|/N \]

- Increase in $N$ → decrease in $\lambda_z$.
- Increase in $U$ → increase in $\lambda_z$.

Birner (GRL, 2006) 
Randel (NCAR Tech. memo, 1992)
2) Cold mid- to lower stratosphere bias: Vertical resolution sensitivity

- **Question:** Does increasing vertical resolution eliminate the horizontal resolution sensitivity?
- 200m vertical resolution in the 150-50hPa region enough to eliminate horizontal resolution sensitivity (up to 9km horizontal res.).

![IFS vertical resolution: layer thickness](image)

Figure courtesy: Tim Stockdale
2) Cold mid- to lower stratosphere bias: Vertical resolution sensitivity

- Increase in **vertical resolution** leads to warming in the stratosphere at **high horizontal resolution**. No impact at low horizontal resolution.
2) Cold mid- to lower stratosphere bias: Higher order vertical SL interpolation

- **Question:** Does improving accuracy of vertical semi-Lagrangian advection help?
- Going from 3rd to 5th order vertical interpolation helps → Stratosphere warms with higher order interpolation at high horizontal resolution.

![Graph showing the impact of resolution sensitivity in the IFS](image-url)

Figure 12: (a-b): Latitude-pressure cross sections of the zonal-mean T difference between TCo1279 and TL255 for (a) quintic, and (b) cubic vertical interpolation. (c-d) Difference in zonal-mean T between quintic and cubic at (c) TL255 horizontal resolution, and, (d) TCo1279 horizontal resolution. Note the larger impact quintic interpolation at high horizontal resolution. Note also the reduction in horizontal resolution sensitivity with quintic interpolation.
2) Cold mid- to lower stratosphere bias: Filtering $2\Delta z$ waves out

- **Question:** Does filtering $2\Delta z$-oscillations in temperature via semi-Lagrangian vertical filter help horizontal resolution sensitivity?
- Filtering warms high horizontal resolution forecasts, no impact on low horizontal resolution.

![Diagram showing latitude-pressure cross sections of the zonal-mean T difference between TCo1279L137 and TL255L137 for forecasts with $2\Delta z$-filter on T. (b) Difference in T between filtered and unfiltered forecasts at TCo1279L137. (c) Same as (b), but at TL255L137 resolution. The filter strength is SLHDEPSV=0.0025.](image-url)
2) Cold mid- to lower stratosphere bias: Impact on the troposphere

- **Quintic vertical interpolation** applied on temperature and specific humidity alleviates the bias.

- Alleviating the bias has **no statistically significant impact on extended range** forecast skill scores (RPSS) in the Northern Hemisphere or on **medium-range** skill scores in the troposphere.

Figure courtesy: Frederic Vitart
2) Cold mid- to lower stratosphere bias: Summary

- At **higher horizontal resolution**, IFS cools in the global mean in the stratosphere → cold bias in the 150-50hPa region worse. Affects all forecast ranges.
- Behaviour linked to **$2\Delta z$-oscillations** in the vertical arising from inconsistent vertical to horizontal resolution aspect ratio.
- Increasing the **vertical resolution** to 200m eliminates the global mean cooling at **higher horizontal resolution**.
- Filtering out **$2\Delta z$-oscillations** or increasing the **order of SL interpolation** also alleviate the global mean cooling at **high horizontal resolution**.
- Alleviating the bias (via quintic vertical interpolation or modest vertical resolution increase) has **no statistically significant** impact on tropospheric skill scores.