

GLOBAL GRAVITY WAVE DISTRIBUTIONS

Inferred from satellite observations and NWP models

21 Nov 2019 | Peter Preusse, Manfred Ern, Cornelia Strube | ECMWF

Gravity waves are waves visible in:

- $\blacksquare \ \, \text{Temperatures} \qquad \to \text{Clouds}$
- Horizontal and vertical winds
- Density

PROPERTIES OF GWS

- Pure GWs: winds along phase lines
- Intrinsic phase velocity perpendicular phase lines
- Intrinsic group velocity parallel phase lines

PROPERTIES OF GWS

- Pure GWs: winds along phase lines
- Intrinsic phase velocity perpendicular phase lines
- Intrinsic group velocity parallel phase lines
- Slow waves (relative to ground) are tilted versus the wind
- Vertical wavelength of a mountain wave:

$$\lambda_z \simeq 2\pi \frac{u}{N} \tag{1}$$

PROPERTIES OF GWS

- Pure GWs: winds along phase lines
- Intrinsic phase velocity perpendicular phase lines
- Intrinsic group velocity parallel phase lines
- Slow waves (relative to ground) are tilted versus the wind
- Vertical wavelength of a mountain wave:

$$\lambda_z \simeq 2\pi \frac{u}{N}$$
 (1)

- Carry energy flux and momentum flux
- Deposit this flux when dissipating

$$F_{px} = \bar{\rho} (1 - \frac{f^2}{\hat{\omega}^2}) \overline{u'w'} = \frac{1}{2} \rho \frac{k}{m} \left(\frac{g}{N} \right)^2 \left(\frac{\hat{T}}{\bar{T}} \right)$$
 (2)

$$\bar{X} = -\frac{1}{\rho} \frac{\partial}{\partial z} F_{\rho x} \tag{3}$$

RELEVANCE OF STRATOSPHERIC GRAVITY WAVES

- Atmospheric waves convey momentum
- Depositing this momentum, they drive the residual circulation
- By downward coupling this induces synoptic temperature changes up to 2° C

RELEVANCE OF STRATOSPHERIC GRAVITY WAVES

- Atmospheric waves convey momentum
- Depositing this momentum, they drive the residual circulation
- By downward coupling this induces synoptic temperature changes up to 2° C
- Gravity waves are a primary source of uncertainty

Atmospheric circulation as a source of uncertainty in climate change projections

Theodore G. Shepherd

"The most uncertain aspect of climate modelling lies in the representation of unresolved (sub-gridscale) processes such as clouds, convection, and boundary-layer and gravity-wave drag, and its sensitive interaction with large-scale dynamics."

RELEVANCE OF STRATOSPHERIC GRAVITY WAVES

- Atmospheric waves convey momentum
- Depositing this momentum, they drive the residual circulation
- By downward coupling this induces synoptic temperature changes up to 2° C
- Gravity waves are a primary source of uncertainty
- Can satellite observations give guidance?

Satellite observations used to tune Non-Oro Scheme in IFS

Ern et al., ACP, 2006; Orr et al., J. Clim., 2010

SH POLAR VORTEX LASTS TOO LONG

This is a multi-model finding

Butchart et al., SPARC report, 2011

And depends on GW drag

Polichtchouk et al., JAS, 2018

But what are these GWs and their sources?

— Global observations and modeling

SATELLITE GEOMETRIES AND OBSERVATIONAL FILTER

Limb Sounding: resolution limited by geometry, good vertical and moderate horizontal resolution Only absolute values of GWMF

Nadir Sounding: resolution limited by radiative transfer, moderate vertical and good horizontal resolution Only very long vertical wavelengths

Preusse et al, JGR, 2008 Alexander et al, QJRMS, 2010

ACTIVITIES WORLDWIDE

Review papers:

- Fritts and Alexander, RG, 2003
- Kim, Eckermann, Chun, Atmos. Ocean, 2003
- Alexander et al, QJRMS, 2010
- Geller et al., J. Clim., 2013

Groups all around the world are evaluating satellite data and global models

 \rightarrow From here on, a Juelich perspective

GLOBAL DISTRIBUTION: LOWER STRATOSPHERE

Salient patterns (climat.):

- Polar vortex: mountain waves + general enhancement (sources ?)
- Subtropical convection

GW RESOLVED IN NWP

Stephan et al., JAS, 2019 (MPI & FZJ, MS-GWaves)

- No observational filter applied!
- Calculating GW momentum flux from real(istic) data is non-trivial
- Large range of different scales: Caution!
- Satellite methods applicable; new satellites needed

PROCESSES IMPORTANT

Stephan et al., JGR, 2019 (MPI & FZJ, MS-GWaves)

Slide 9

SABER: WHOLE MIDDLE ATMOSPHERE

Convective maxima

- propagate polewards
- relatively gain in strength

Polar vortex

- stronger on SH
- overlap in latitude with summer maxima

Ern et al., ESSD, 2018

Slide 10

4 MONTH OF CONVECTION \rightarrow TAV

Dan Chen et al., Annales Geophys., 2019

- Pulse-like occurence of subtropical convective GW cause a Terrannual Variation
- TAV is a higher harmonic of the annual cycle

$TAV \rightarrow POLEWARD PROPAGATION$

Dan Chen et al., Annales Geophys., 2019

TAV emphasizes poleward propagation from convective centers

AIRS: NET MOMENTUM FLUX (ZONAL)

z=36 km MF12x [mPa] January aver.

z=36 km MF12x [mPa] July aver.

Ern et al., GRL, 2016 and work in progress

- Momentum flux is directed opposite to background wind:
 - westward in polar vortex
 - eastward in subtropics
- behavior enhanced by long vertical wavelength (observational filter!)

-1.5

AIRS: NET MOMENTUM FLUX (MERIDIONAL)

z=36 km MF12y [mPa] January aver.

z=36 km MF12y [mPa] July aver.

Ern et al., GRL, 2016; work in progress

- Confluence at 60°S
- Nortward tendency in NH winter

3D, OBLIQUE PROPAGATION

Kalisch et al., JGR, 2014

There is need to replace GW parametrization in the grid column

- Oblique propagation avoids critical level filtering
- Relevant for:
 - Summer mesopause
 - Stratwarmings (Ern et al., 2016)

cf. also Sato et al., 2009; Preusse et al., 2009

Vortex-GW already at 20 km ⇒ Local sources?

GLORIA LIMB SOUNDER

The flight towards Iceland on 25 January targeted a mountain wave event

FORWARD AND BACKWARD RAY-TRACING

ECMWF ANALYSIS DATA ON SH

Case study for DeepWave: 01-Jul-2014

Strube et al., work in progress

OBLIQUE PROPAGATION

- gravity waves propagate up to 25° poleward
- major part from New Zealand
- additional sources: fronts, jet-exit regions
- oblique propagation in particular in the UTLS (10-15km)

CONCLUSIONS

- GWs are important for middle atmosphere circulation
- Prominent example: SH polar vortex
- Satellite observations show global picture
- $\hbox{ NWP models resolve already large part of GW spectrum} \rightarrow \hbox{ \bf Danger of double counting}$
- \blacksquare Extremely-oblique propagation can redistribute drag \to Not in GW parametrization

Global limb imaging needed!

Global data need to be complemented with case studies!

Campaign at world-hot-spot of GWs: Tierra del Fuego

