Predicting the Downward and Surface Influence of the February 2018 and January 2019 Sudden Stratospheric Warming events in S2S Models

Motivations

Only two major sudden stratospheric warming (SSW) event occurred since the initiation of the sub-seasonal to seasonal (S2S) prediction program:

1. What controls the magnitude of the downward impact of SSWs on the surface from a statistical perspective?
2. What is the difference between the two SSWs in term of their intensity, type, and the skill at which they can be forecasted?

Data and Methods

- Daily NCEP/NCAR reanalysis and 11 S2S models in Figs. 1a, 1b
- MWO SSW onset criterion (\(U_{500/300}\)) 11 February 2018 and 1 January 2019
- SSW hit ratio (HR) = Number of forecast members that forecast the SSW (\(2+2\)-day error is allowed)
- Anomaly correlation, ACC(\(\hat{t}\))

Figures

- Fig. 1(a, b) SSW hit ratio for each available initializations from each models (color filling) and the number of all members for each initialization (no initialization in white space) for the two SSWs.
- Fig. 1(c, d) NAM evolutions from 1000-10hPa in the reanalysis during the two SSWs, respectively.

Predictability of lower stratospheric response to SSW events

- (a) MME 2018 SSW
- (b) MME 2019 SSW

Summary

- The strength of the SSW is more important to determine the magnitude of the downward impact than the dominant wavenumber.
- The T2m in North Eurasia, Middle East, South China and Eastern US is more difficult to forecast for the non-downward propagating 2019 SSW.
- The rainfall anomalies in some regions are poorly forecasted both in a deterministic and probabilistic sense for (non-)downward propagating SSWs.

Reference