NN retrieval of soil moisture

F. Aires, C. Prigent, N. Rodriguez-Fernandez, J. Kolassa, C. Jimenez, P. De Rosnay, C. Albergel, Y. Kerr

and co-authors...

Physical retrieval algorithm

Inverse problem:

TB=Observations SMOS, ASCAT, AMSR-E...)

➔ For each observation TB, we search SM such that: RTM(SM,Z) = TB where RTM is Radiative Transfer Model

- **Classical approaches:** Iterative, Optimal Interpolation, Bayesian, etc. $SM^* = SM_{fg} + [A^t S_{\epsilon}^{-1} A + S_{fg}^{-1}]^{-1} A^t S_{\epsilon}^{-1} (TB_{\epsilon} - A \cdot SM_{fg})$
- **Limitations:** requires simulations RTM(X,Z) but uncertainties on:
 - A priori information on surface parameters Z
 - Radiative Transfer Model (RTM)
- **Question:** RTM modeling not satisfactory. Other solution?

Neural networks retrieval

Remark: The NN model is applied at pixel level, not as image processing (≠deep learning)

Advantages/inconvenients

Advantages of NNs:

- Fast in operational mode, low memory required
- Multivariate, high-dimension space
- Nonlinear: situation-dependent, saturation effects
- *Flexible*: No rigid assumptions, can take realistic and complex specifications (FG, instr. noise, model errors, etc.) and various ways to introduce *a priori* information
- Global inversion model, no need for further inversion scheme
- Exploit synergy
- *Information content* tool to quantify the impact of: FG, noise, regimedependence, number and location of channels, compression errors, fusion of information, *etc*.

Limitations of NNs:

- Needs to be *re-trained* if conditions change (new instrument, noise characteristics, etc.)
- Need a high-quality learning dataset

Building a learning dataset: in situ solution

In situ measurements

Real satellite observations

Global Soil Moisture Data Bank (Robock et al., BAMS, 2000)

Region	Station s	Surface	Frequenc y	Period	Depth	
Illinois	19	grass	1-3/m	All year	10cm	
lowa	6	corn	2/m	Growing	7.8cm	
Russia	171	cereal	3/m	All year	20cm	
India	11	grass	4/m	All year	xxcm	
Mongolia	42	Pasture	3/m	Spring	10cm	
		Weat		summer		

Problems:

- not enough *in situ* observations to represent well the spatial and temporal variability of soil moisture
- Spatial coherency of *in situ* data
- The measured SM might not be the same as what the satellite observes
- After launch only

Building a learning dataset: RTM simulations

Global SM from model

Simulated Observations

- Multiple years
- Global coverage
- We choose the SM we want from the model

Advantage:

- Can be done before launch **Problem:**
- What is our confidence on the Radiative Transfer Model?

Building a new learning dataset for historical measurements

Global SM from retrieval

Real SMOS observations

- Multiple years
- Global coverage

Advantage:

- Independent from Surface Model
 Problem:
- Need to rely on an *a posteriori* retrieval, which is based on a RTM

Building a learning dataset: Our approach

Global SM from model

Real satellite observations

- Multiple years
- Global coverage
- We choose the SM we want from the model

Problems/questions:

- Is the land model SM good enough?
- Are the SM really related to the Obs?
- Are we just reproducing the SM from the model when teaching the retrieval with this dataset?
- After launch only

NN approach

Applications:

- 1) Information content analysis, and synergy
- 2) Remote sensing: No need of RTM, or *in situ* measurements
- **3) Consistency checking method:** Check consistency of model output with satellite observations, help model development
- **4)** Variational assimilation applications: Define a link between observations and model (link coherent with model) but need to specify uncertainties

(Aires, Prigent, Rossow, Soil moisture at a global scale. II – Global Statistical relationships, JGR, 2005)

Application 1) – Information content & synergy

Application 2) - Soil moisture retrieval

 σ_{40}

 T_S

 e_h , e_v

NDVI

BTI

Spatial and temporal variability of the retrieval is based on the observations

•

• The NN retrieval does not reproduce the model patterns, it can even correct it!

SM retrieval from AMSR-E & ASCAT MW observation synergy Part 2: Product evaluation, Kolassa, Gentine, Prigent, Aires, Ale., RSE, 2017

1.1

1.14

1.25

1.59

Several spatial/temporal metrics are used

0.79

0.74

0.68

0.39

0.64

0.46

0.54

0.68

0.96

1.00

1.05

1.22

Ret NCEF NCFP Ret. ECMWF

0.56

0.47

0.39

0.38

0.57

Application 3) – Consistency checking

→Consistency checking between model output and satellite observations:

- ECMWF closer to EO observations
- This tool can help model development

Aires, Prigent, Rossow, Soil moisture at a global scale. II – Global Statistical relationships, JGR, 2005)

Synthetic tests:

\rightarrow NN retrieval is able to correct season where necessary

Jimenez, Clark, Kolassa, Aires, Prigent & Blyth, A joint analysis of modelled SM fields and satellite obs., JGR,2013.

Application 4) - Variational assimilation

• Assimilation in NWP centres of:

(1) Raw observations: need a RTM, good auxiliary parameters
 → Ask to the system to "perform" the retrieval, data fusion
 (2) Retrieved SM: need uncertainty characterization Ri

 Solution (1) has been privileged because easier to specify errors in raw observations (supposed to be constant) than on retrieved products (state-dependent). But difficulty to rely on the RTM...

(2)
$$J(x_0) = \frac{1}{2}(x_0 - x_0^{\ b})^T B^{-1}(x_0 - x_0^{\ b})$$

$$+ rac{1}{2} \sum_{i=0}^{r} (x(t_i) - x_i^r)^T \mathbf{R}_i (x(t_i))^{-1} (x(t_i) - x_i^r)$$

Advantages of (2):

- Retrieval is coherent with model SM
- We can "help" the retrieval when necessary
- No need for aux. parameters

Aires, F., et al. (2005), Sensitivity of satellite microwave and infrared observations to SM at a global scale: 2. Global statistical relationships, JGR.

Application 4) - Variational assimilation

• Is NN retrieval independent enough from the model?

- → Global bias-calibration better than localized ones for assimilation!
- Dynamic behaviour too

Assimilation experiments at ECMWF with SMOS

T+60h

T+72h

SMOS NN SM data assimilation in a land surface model& atmospheric impact, Rodriguez-Fernandez, de Rosnay, Albergel, Richaume, Aires, Prigent, Kerr, RS, 2019

In parallel, SMAP assimilation at NASA:

- Data assimilation to extract soil moisture information from SMAP observations, Kolassa et al., RS, 2017.
- Merging active & passive MW observations in SM data assimilation, Kolassa, Reichle, Draper, RSE 2017.

Downscaling of SM

Figure 1. Two levels of spatial grids used for training and retrieval steps in the NN algorithm. While both steps have similar grid structures, the spatial resolutions are different as listed here.

Inputs using in each of the downscaling scheme:

Training	Ch.4 . 151					
	SM at 45 km	NDVI at 45 km	NDVI at 9 km for target pixel	ASCAT SI	VI (45	or 11 km)
Retrieval	SM at 11.25 km	NDVI at 11.25 km	NDVI at 2.25 km for target pixel	NDVI (45	and 9	km)
Training	SM at 45 km	NDVI at 45 km	NDVI at 9 km for target pixel	OIDVI at 45 km for NEVY 9 km	<u>#3</u>	12
Retrieval	SM at 11.25 km	NDVI at 11.25 km	NDVI at 2.25 km for target pixel	Tipne 2 nd	ēx	-
Training	SM at 45 km	NDVI at 45 km	NDVI at 9 km for target pixel	TI at 45 km	TI at 9 km for target pixel	(. - ,
Retrieval	SM at 11.25 km	NDVI at 11.25 km	NDVI at 2.25 km for target pixel	TI at 11.25 km	TI at 2.25 km fo target pixel	r –
Training	SM at 45 km	NDVI at 45 km	NDVI at 9 km for target pixel	Π at 45 km	TI at 9 km for target pixel	$\sigma_{\rm NDVI}$ at 45 km for all pixels at 9 km
Retrieval	SM at 11.25 km	NDVI at 11.25 km	NDVI at 2.25 km for target pixel	TI at 11.25 km	TI at 2.25 km fo target pixel	r $\sigma_{\rm NDVI}$ at 11.25 km for all pixels at 2.25 km
	Training Retrieval Training Retrieval Training	TrainingSM at 45 kmRetrievalSM at 11.25 kmTrainingSM at 45 kmRetrievalSM at 11.25 kmTrainingSM at 45 km	TrainingSM at 45 kmNDVI at 45 kmRetrievalSM at 11.25 kmNDVI at 11.25 kmTrainingSM at 45 kmNDVI at 45 kmRetrievalSM at 11.25 kmNDVI at 11.25 kmTrainingSM at 45 kmNDVI at 45 km	Retrieval SM at 11.25 km NDVI at 11.25 km NDVI at 2.25 km for target pixel Training SM at 45 km NDVI at 45 km NDVI at 9 km for target pixel Retrieval SM at 11.25 km NDVI at 11.25 km NDVI at 2.25 km for target pixel Training SM at 11.25 km NDVI at 45 km NDVI at 2.25 km for target pixel Training SM at 11.25 km NDVI at 11.25 km NDVI at 2.25 km for target pixel Retrieval SM at 45 km NDVI at 45 km NDVI at 9 km for target pixel Training SM at 11.25 km NDVI at 11.25 km NDVI at 2.25 km for target pixel Training SM at 45 km NDVI at 45 km NDVI at 2.25 km for target pixel Retrieval SM at 12.25 km NDVI at 45 km NDVI at 2.25 km for target pixel	Retrieval SM at 11.25 km NDVI at 11.25 km NDVI at 2.25 km for target pixel NDVI (45 Training SM at 45 km NDVI at 45 km NDVI at 9 km for target pixel Image: pixel Image: pixel Retrieval SM at 11.25 km NDVI at 45 km NDVI at 2.25 km for target pixel Image: pixel Image: pixel Image: pixel Training SM at 11.25 km NDVI at 11.25 km NDVI at 2.25 km for target pixel Image: pixel Image: pixel Image: pixel Retrieval SM at 11.25 km NDVI at 45 km NDVI at 9 km for target pixel Image: pixel Image: pixel Image: pixel Retrieval SM at 11.25 km NDVI at 11.25 km NDVI at 2.25 km for target pixel Image: pixel Image: pixel Training SM at 45 km NDVI at 11.25 km Image: pixel Image: pixel Image: pixel Training SM at 45 km NDVI at 45 km NDVI at 9 km for target pixel Image: pixel Image: pixel Training SM at 11.25 km NDVI at 2.25 km for target pixel Image: pixel Image: pixel Retrieval SM at 11.25 km NDVI at 2.25 km for target pixel Image: pixel Image: pixel	Retrieval SM at 11.25 km NDVI at 11.25 km NDVI at 2.25 km for target pixel NDVI at 2.25 km for target pixel NDVI at 45 km NDVI at 9 km for target pixel Training SM at 45 km NDVI at 12.25 km NDVI at 2.25 km for target pixel - - Retrieval SM at 11.25 km NDVI at 11.25 km NDVI at 2.25 km for target pixel - - Training SM at 11.25 km NDVI at 11.25 km NDVI at 2.25 km for target pixel - - Training SM at 45 km NDVI at 45 km NDVI at 9 km for target pixel TI at 45 km TI at 9 km for target pixel Retrieval SM at 11.25 km NDVI at 11.25 km NDVI at 2.25 km for target pixel TI at 1.25 km TI at 2.25 km for target pixel Training SM at 11.25 km NDVI at 11.25 km NDVI at 2.25 km for target pixel TI at 1.25 km TI at 9 km for target pixel Training SM at 11.25 km NDVI at 45 km NDVI at 2.25 km for target pixel TI at 9 km for target pixel TI at 2.25 km for target pixel Retrieval SM at 11.25 km NDVI at 12.25 km for target pixel TI at 2.25 km for target pixel

Global downscaling of remotely sensed SM using NN, Alemohammad, Kolassa, Prigent, Aires, Gentine, HESSS, 2018.

Conclusion/Perspectives

- What we learned:
 - This is perfect technique to **build long-term record of SM**
 - Calibration over long time record
 - Technique flexible enough for all kind of instruments
 - Exploit synergy for better SM retrieval
 - Good approach for SM assimilation (& other surface products?)
- Assimilation in NWP centres:
 - ECMWF
 - NASA

Uncertainty characterization to improve usability of SM product &

- State-dependency of retrieval errors
- Similar work should be done for SM

Perspectives

• Build long-term record of SM using all the available EO:

Instrument	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	/ 1991	1 1992	1993	1994	1995	1996	<u>i 1997</u>	/ 1998	1999	<u>) 200</u> 0	<u>) 200</u> 4	1 2007	2 2003	2004	1 2005	2006	2007	2008	3 2009	2010
Model Data	#	-	-	#	-	-	-	#	-	—	—	-	-	#	F	F	F	#	—	#	#	+	-	#	#	#	—	F	-	F	#	—
ORCHIDEE																									<u> </u>					'		
HTESSEL																																
Active Microwave				F			F				-			F			F		-	—	=	—	-	—	-	-						
ERS scatterometer (5GHz)	+'	+					+'	-									availabl	ole at c	obs								ERS	lifetime				
ASCAT (5.25 GHz)		· · · · ·		-																												
QuickScat (13.4 GHz)	'	'					'				_				'		'				_											\square
Passive Microwave																																
	'	'	-	'			'																									-
SSM/I (19.35 GHz) AMSR-E (6.9 GHz)	'	+'	-	'			+'		ç	peratio	inal SS	SM/I inst	rumen	ts				Sur	urface en	nissivit	les ava	lable a	<u>t obs</u>				eratio brightnes		SM/I inst			
SMMR (6.63 GHz)				brightnes	ess tem	iperatu	res										<u> </u>					<u> </u>					<u>/ighure</u> ,	Sterny	<u>(erature</u>	<u>s</u>		
Surface Temperature		<u> </u>					-	f -						-	-	f '		f -												f '	'	-
Sunace remperatore	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ISCCP	'											diur	nal cyr	cle ampli	litudes /	At obs											3-	hourly da	data			
NDVI		\vdash																														
AVHRR	'	′					AVH	IRR NDV	/VI avail	ability								avr	vailable a	at obs				AVH	IRR NDV	/I avail	ability					
MODIS	'						'							'	'		'															
Flag Data																																
Snow/Ice Flag	'	+'	+	'			+'						—																			
Wetland/Inundation Flag	+	+	1-				+	+		+																						

Data fusion better synergy than *a posteriori* combination:

- o Aires, Aznay, Prigent, Paul, Bernardo, JGR, 2012
- SM retrieval from AMSR-E & ASCAT MW observations synergy Part 1: Satellite data analysis, Kolassa, Gentine, Prigent, Aires, RSE, 2016
- Merging active & passive MS observations in SM data assimilation, Kolassa, et al., RSE 2017.

→ Merging EO data *a priori* better than *a posteriori* combination of a SM products

Thank you!