Precipitation measurements for hydrological applications

Chris Kidd^{1,2} and George Huffman¹ ¹NASA/Goddard Space Flight Center, Greenbelt, MD ²University of Maryland/ESSIC, College Park, MD

Precipitation

- is ultimately the source of all of our fresh water it governs our society and the environment, and is a critical resource, but one that causes natural disasters through drought and floods;
- forms a critical part of the Earth's water and energy cycle (evaporationtransportation-deposition), but the atmospheric water content is small: input/output >> atmosphere storage leading to short-term cycling;
- is challenging to measure, due to the vagaries of its temporal and spatial occurrence – it is itself, an extreme event – and is very much dependent upon scale, both 3-dimensionally and temporally;
- users have different expectations of the measurements: meteorologists, hydrologists, water resources, civil defence, etc.

Hydrology – river flow

Infrastructure impacts

Q RUCS

Pluvial events

Measuring Precipitation

Key to accurate measurements are the:

- **Observational capability** ability of a sensor to observe precipitation (*wavelength/frequency*, temporal and spatial resolution, sensitivity)
- <u>Retrieval capability</u> ability of a scheme to 'convert' observations into precipitation estimates (*empirical through physical relationships*)

Measurements made by rain/snow gauges, surface radar, satellite observations have their own individual characteristics, advantages and disadvantages.

Surface & Satellite Observing Systems

	Instrument	Temporal	Spatial	Notes
Surface	Gauges: accumulation	Variable	Point	Temporal scale dependent upon observation frequency
	Gauges: Tipping Bucket	Quantised	Point	Quantisation of bucket (0.1, 0.2 mm or 1/100") and data logger
	Distrometers	Instantaneous	Point	Individual drop measurements
	Micro rain radar	Instantaneous	Point	Vertical profiles up to 256 levels/10 s sampling
	Weather radar	Instantaneous	Radial	Radial measurements of dBZ converted to a Cartesian grid
	Microwave links	Instantaneous	Linear	Line of sight measurements along length of link
Satellite	Visible imagery	Instantaneous	1-4 km	Intermittent (LEO) 15 min sampling (GEO)
	Infrared imagery	Instantaneous	1-4 km	Intermittent (LEO) 15 min sampling (GEO)
	Passive Microwave	Column	mn 5-25 km	Intermittent sampling (LEO)
	Imagers	column		Resolution = frequency dependent
	Passive Microwave	Column 16-48	16-48 km	Intermittent sampling (LEO)
	Sounders			Resolution = frequency/scan position dependent
	Active Microwave	Instantaneous	antaneous 5 km	c.80 vertical levels: Limited intermittent sampling (LEO)
	(radar)			

Note the different spatial and temporal sampling of each sensor.

Surface & Satellite Observing Systems

Different systems observe things differently – spatially, temporally and physically

Weather Radars (WMO database)

H-SAF/HEPEX, ECMWF, Reading, UK, 25-29 Nov, 2019

Goddard Space Flight Center

Weather Radars (real time) rain-alarm.com

Satellite observations

Visible/infrared observations are historically the mainstay of precipitation estimates, despite poor cloud-top to surface rainfall relationships. Geosationary Infrared still plays an important role – resolution and sampling.

Passive microwave observations (1978/1987 onwards) provide more direct measures of precipitation. Since 2014 the Global Precipitation Measurement mission coordinates am international constellation of partner satellites:

The constellation includes 12 PMW +1 AMW sensors:

- GMI 1x GPM Microwave Imager plus DPR Dual-frequency Precipitation Radar;
- AMSR2 1x Advanced Microwave Scanning Radiometer-2;
- SSMIS 3x Special Sensor Microwave Imager/Sounder;
- MHS 4x Microwave Humidity Sounder;
- ATMS 2x Advanced Technology Microwave Sounder, and;
- SAPHIR 1x Sondeur Atmosphérique du Profil d'Humidité Intertropicale par Radiométrie

GPM Constellation (01 Nov 2018 descending)

Imagers/conical

MARYLA

NIVERSITY OF

turning these into....

EUMETSAT H-SAF P-IN-SEVIRI

Instantaneous Rain Rate retrieved from IR-MW blending data Blending of: SEVIRI IR + SSM/I-SSMIS MW + AMSU MW: 20191121 1400

2019 Nov 21 14:20:48 Production_SATELLITE_AREA_COMET_Agorithm_ISAC_CNR......AGEUMETSAT----

Operational retrieval schemes (single, passive microwave)

NASA Goddard PROFiling (GPROF) scheme:

- physically-based Bayesian retrievals;
- database of 400M GMI-DPR matchups, used as the basis for all sensors in the constellation through modelling of frequencies/resolutions;
- Retrievals constrained by surface type (& snow cover) and model information (TPW/T2m)

EUMETSAT HSAF – H01 and H02 schemes:

- model-generated Cloud Dynamics Radiation Database to establish Tb-RR relationships;
- different schemes for Imagers (H01 Bayesian) and Sounders (H02 neural networks)

Precipitation Retrieval and Profiling Scheme (PRPS):

- Primarily developed for passive microwave sounders (SAPHIR, MHS, ATMS, AMSU-B);
- database sensor-DPR matchups, typically < 40M entries;
- SAPHIR retrievals constrained by model information (TPW/T2m) (as per GPROF).

Precipitation from passive microwave sounding instruments

- Passive microwave sounding instruments not necessarily ideal for precipitation;
- Techniques provide 'reasonable' estimates w.r.t. surface radar product;
- Subtle differences between the retrieval techniques but all potentially useful!

Temporal correlation times: Satellite vs surface

Satellite estimates are generally very good – <u>at the time of observation.</u> How to fill in the observation gaps?

Multi-channel/multi-sensor techniques

Rationale: to make best use of all precipitation-capable observations

- Passive microwave calibrated infrared retrievals, updated at various temporal/spatial resolutions, e.g. AGPI, PERSIANN etc.
- Use of IR-derived (or model) motion vectors to advect precipitation between the passive microwave overpasses.

Techniques include:

- IMERG (NASA)
- GSMaP (JAXA)
- CMORPH (NOAA)
- All use passive microwave retrievals as 'true', advected by IR data or models by forward/backward propagation with/without Kalman filter.

IMERG precipitation products (0.1°x0.1°/30min)

IMERG (V06B)

- Early (4 hrs) Late (18 hrs) Final (c.3 months)
- new source for morphing vectors
- higher-latitude coverage
- extension back to 2000 (and eventually 1998)
- improved Quality Index

IMERG – diurnal cycle, Maritime continent

Average September-November for 2001 to 2018, Late Run

- day/night shading
- Blue Marble land
- smoothed in space and time
 - even 18 years of seasonal data still has lumps

Diurnal sampling and long term records

ERA5, GPM DPR and TRMM PR all agree over AIP-3 region, not over the Amazon.

Since many of the LEO satellites drift over time, their sampling of the diurnal cycle changes over time.

International Precipitation Working Group: Ground Validation

#2) Establish standards for validation and independent verification of precipitation measurements

#3) Foster the exchange of data on inter-comparisons of operational precipitation measurements from satellites

- Provide regional-scale validation of precipitation products using common graphical, descriptive and statistical analysis of daily, 0.25° resolution products;
- Precipitation products made available for comparisons at local 'validation' centres (thus avoiding exchange of 'sensitive' surface data sets);
- carried out on a '<u>best effort</u>' basis <u>very reliant</u> upon the contributors (or lack of – modellers included!).
 http://www.isac.cnr.it/~ipwg/

H-SAF/HEPEX, ECMWF, Reading, UK, 25-29 Nov, 2019

Goddard Space

Fliaht Center

IPWG Inter-comparison regions

Near real-time inter-comparison of model & satellite estimates vs radar/gauge

IPWG - http://www.isac.cnr.it/~ipwg/

H-SAF/HEPEX, ECMWF, Reading, UK, 25-29 Nov, 2019

CGMS &

Yorkshire Floods: November 2019

A significant rainfall event took place on 7th November 2019 over South Yorkshire, leading to widespread flooding and disruption.

Yorkshire Floods: Satellite overpasses and sampling

H-SAF/HEPEX, ECMWF, Reading, UK, 25-29 Nov, 2019

Goddard Space Flight Center

Yorkshire Floods: Radar vs satellite daily totals 7 November 2019

Radial effects; Range effects... 0.0 0.1 0.2 0.5 0.75 1.0 2.0 5.0 7.5 10.0 20.0 Total Rainfall (mm) Some missed precipitation? Orography? Light precipitation?

User considerations

User requirements

- Surface precipitation, vv atmospheric precipitation
- Latency vs accuracy
- Meteorology vs climatology
- Regional/global, surface type
- E.g. hydrology:
- Amount falling over a certain area, within a given time (sampling)
- Basin morphology; shape, size, orography, etc (resolution)
- Water management: regulated rivers and catchments (interference)
- Storm dynamics; inter-action of storm and basin characteristics (such as movement across a basin)

What do we actually observe?

Typically spaceborne radars can only retrieve useful measurements to within c.750m of the surface – at nadir; off-nadir this is closer to 2500m. Passive microwave see an atmospheric column, although at high frequencies this is altitude-weighted.

Radars measure an instantaneous quantity with a rain/no-rain threshold of about 0.2 mm/hr, **passive microwave a time-integral** with a rain/norain threshold of (maybe?) 0.1 mm/hr.

There should be no expectation that measurements from different instruments will be similar

MRR-Pro profiles: Plymouth (UK)

H-SAF/HEPEX, ECMWF, Reading, UK, 25-29 Nov, 2019

ARYI

Goddard Space Flight Center

Conclusions

- Range of satellite observations are available used to augment surface data sets;
- Care needed to understand the capabilities and limitations of each product;
- Often difficult to address the specific needs of the diverse range of user applications;
- Good reasons why different satellite estimates do not (and should not) match those at the surface;
- Ultimately temporal and spatial scales are critical in ensuring realistic precipitation products are delivered to the user community.

