

Data Assimilation for Continuous Assessment of Severe Conditions Over Terrestrial Surfaces

Clément Albergel¹, Y. Zheng¹, B. Bonan¹, E. Dutra², N. Rodríguez-Fernández³, S. Munier¹, C. Draper⁴, P. de Rosnay⁵, J. Muñoz-Sabater⁵, G. Balsamo⁵, D. Fairbairn⁵, C. Meurey¹ and J.-C. Calvet¹

- 1 CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
- 2 Instituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon, Portugal
- 3 CESBIO, Université de Toulouse, CNRS, CNES, IRD, Toulouse, France
- 4 CIRES/NOAA Earth System Research Laboratory, Boulder, CO 80309, USA
- 5 European Centre for Medium-Range Weather Forecasts, Shinfield Road, Reading RG2 9AX, UK

Study the vegetation and terrestrial water cycles

 Current fleet of Earth Satellite missions holds an unprecedent potential to quantify Land Surface Variables (LSVs)

[Lettenmaier et al., 2015, Balsamo et al., 2018]

- Spatial and temporal gaps & cannot observe all key LSVs (e.g. RZSM)
- Land Surface Models (LSMs) provide LSV estimates at all time/location
- LSMs have uncertainties
- Through a weighted combination of both, LSVs can be better estimated than by either source of information alone [Reichle et al., 2007]
- Data assimilation

Spatially and temporally integrates the observed information into LSMs in a consistent way to unobserved locations, time steps and variables

Study the vegetation and terrestrial water cycles

LDAS-Monde: global capacity offline integration of satellite observations into a land surface model fully coupled to hydrology

LDAS-Monde involves

- Land surface model: ISBA-A-gs
- River routing system: CTRIP (CNRM-Total Runoff Integrating Pathways, now 1/12°)
- Data assimilation routines (SEKF, EnSRF, PF)
- Satellite derived observations (SSM, LAI)

ISBA Land Surface Model

ISBA solves the energy and water budgets at the surface level and describes the exchanges between the land surface and the atmosphere (on a sub-hourly basis)

- ISBA-A-gs (CO₂-responsive version) simulates the diurnal cycle of water and carbon fluxes, plant growth and key vegetation variables
- Phenology driven by photosynthesis
- → LAI is very flexible and can be updated when observations are available
- ISBA-Dif multilayer soil diffusion scheme (14 layers, 12 m)
- ISBA land surface model needs:
 - Parameters for the vegetation and soil texture
 Derived from the ECOCLIMAP-II* landcover database
 - Atmospheric forcing

Longwave & shortwave radiation, 2-metre air temperature & humidity, precipitations (liquid and solid), surface pressure and near surface wind speed

* 1km spatial resolution, ECOCLIMAP-SG already available, 300m resolution

Study the vegetation and terrestrial water cycles

LDAS-Monde: global capacity offline integration of satellite observations into a land surface model fully coupled to hydrology

LDAS-Monde involves

- Land surface model: ISBA-A-gs
- River routing system: CTRIP (CNRM-Total Runoff Integrating Pathways, now 1/12°)
- Data assimilation routines (SEKF, EnSRF*, PF)
- Satellite derived observations (SSM, LAI)

LDAS-Monde successfully validated at regional/continental scale

- Agricultural statistics (e.g. Dewaele et al., 2018, HESS)
- River discharge (e.g. Albergel et al., 2017, GMD, 2018, RS)
- In situ measurements of soil moisture (e.g. Albergel et al., 2018, RS)
- Evapotranspiration from GLEAM, Fluxnet2015 (e.g. Albergel et al., 2018, RS)
- Gross Primary Production from FLUXCOM (e.g. Tall et al., 2019, RS)
- Sun-Induced Fluorescence (vs. GPP, e.g. Leroux et al., 2018, RS, Tall et al., 2019, RS)

[*LDAS EnSRF: Bonan et al HESSD]

Model	Domain	Atm. Forcing	DA Method	Assimilated Obs.	Observation Operator	Control Variables	Additional Option
ISBA Multi-layer soil model CO ₂ -responsive version (Interactive vegetation)	Global (2010 – 2018)	ERA-5 Res.: 0.25°x0.25° (LDAS-ERA5)	SEKF	SSM (CGLS ASCAT SWI* + cdf matching) LAI (CGLS GEOV1*)	Second layer of soil (1-4cm) LAI	Layers of soil 2 to 8 (1-100cm) LAI	Coupling with CTRIP (0.5°)

- Control variables (CVs) are directly updated thanks to their sensitivity to the observed variables
- Other variables are indirectly modified through biophysical processes and feedbacks in the model

^{*}https://land.copernicus.eu/global/

Model	Domain	Atm. Forcing	DA Method	Assimilated Obs.	Observation Operator	Control Variables	Additional Option
ISBA Multi-layer soil model CO ₂ -responsive version (Interactive vegetation)	Global (2010 – 2018)	ERA-5 Res.: 0.25°x0.25° (LDAS-ERA5)	SEKF	SSM (CGLS ASCAT SWI* + cdf matching) LAI (CGLS GEOV1*)	Second layer of soil (1-4cm) LAI	Layers of soil 2 to 8 (1-100cm) LAI	Coupling with CTRIP (0.5°)

2 LDAS-ERA5 experiments: Model/Open-loop (no assimilation) and Analysis (assimilation)

0.96 1.4 0.48 1.9 LAI (m^2m^{-2})

More evaluation:

https://www.hydrol-earth-syst-sci-discuss.net/hess-2019-534/

^{*}https://land.copernicus.eu/global/

Selection of 19 regions known for being potential hot spots for droughts and heat waves

Monthly anomalies for 2018 with respect to 2010-2018

LDAS-Monde: Leaf Area Index (top) and soil Moisture (bottom)

Seasonal cycles:

- Obs., Model, Analysis: 2018 quite different from 2010-2017
- smaller differences between Model and Analysis for 2018 than for 2010-2017

- min/max Obs. 2010-01-01 2017-12-31
- Obs. 2018-01-01 2018-12-31
- -- Obs. 2010-01-01 2017-12-31

- min/max Model 2010-01-01 2017-12-31
- Model 2018-01-01 2018-12-31
- -- Model 2010-01-01 2017-12-31

- min/max Analysis 2010-01-01 2017-12-31
- Analysis 2018-01-01 2018-12-31
- -- Analysis 2010-01-01 2017-12-31

LDAS-Monde: Leaf Area Index (top) and soil Moisture (bottom)

Analysis improvements over Model simulation

Analysis 2010-01-01 - 2017-12-31

Model 2010-01-01 - 2017-12-31

Obs. 2010-01-01 - 2017-12-31

Seasonal cycles:

- Obs., Model, Analysis: 2018 quite different from 2010-2017
- smaller differences between Model and Analysis for 2018 than for 2010-2017

- min/max Obs. 2010-01-01 2017-12-31
- 2018-01-01 2018-12-31
- Obs. 2010-01-01 2017-12-31

- - min/max Model 2010-01-01 2017-12-31
 - Model 2018-01-01 2018-12-31
 - Model 2010-01-01 2017-12-31

- min/max Analysis 2010-01-01 2017-12-31
- Analysis 2018-01-01 2018-12-31
- Analysis 2010-01-01 2017-12-31

Analysis 2018-01-01 - 2018-12-31

Analysis 2010-01-01 - 2017-12-31

LDAS-Monde: Leaf Area Index (top) and soil Moisture (bottom)

Model 2018-01-01 - 2018-12-31

Model 2010-01-01 - 2017-12-31

Obs. 2010-01-01 - 2017-12-31

Such an extreme event needs more attention!

Using ECMWF high resolution operational analysis to force LDAS-Monde (<u>LDAS-HRES</u>, 0.10°x0.10°) and complement the use of ERA5 (<u>LDAS-ERA5</u>, 0.25°x0.25°)

SSM: strong positive impact from the analysis

Such an extreme event needs more attention!

- Using ECMWF high resolution operational analysis to force LDAS-Monde (<u>LDAS-HRES</u>, 0.10°x0.10°) and complement the use of ERA5 (<u>LDAS-ERA5</u>, 0.25°x0.25°)
- 10-day forecast: assess the impact of the initial conditions on the LSVs Fc

SSM: strong positive impact from the analysis

LDAS-Monde Forecast Implementation

Initial conditions

Up to **10 day** Forecasts

LDAS-Monde Forecast Implementation

Up to **10 day** Forecasts Strong impact from the initial conditions

LDAS-Monde Forecast Implementation

Up to **10 day** Forecasts
Small impact from the initial conidtions, model goes back quickly to its climatology

Such an extreme event needs more attention!

- Using ECMWF high resolution operational analysis to force LDAS-Monde (<u>LDAS-HRES</u>, 0.10°x0.10°) and complement the use of ERA5 (<u>LDAS-ERA5</u>, 0.25°x0.25°)
- 10-day forecast: assess the impact of the initial conditions on the LSVs Fc

SSM: strong positive impact from the analysis, impact of initialisation seems to vanish quickly

Such an extreme event needs more attention!

- Using ECMWF high resolution operational analysis to force LDAS-Monde (<u>LDAS-HRES</u>, 0.10°x0.10°) and complement the use of ERA5 (<u>LDAS-ERA5</u>, 0.25°x0.25°)
- 10-day forecast: assess the impact of the initial conditions on the LSVs Fc

• LAI: strong positive impact from the analysis, strong positive impact from the initialisation

Towards 'higher' spatial resolution

- LDAS-Monde forced by AROME atmospheric fields from Météo-France at 2.5km x
 2.5km spatial resolution (aggregated from 1.3km x 1.3km spatial resolution), assimilation of LAI300 CGLS
- Impact of the July 2019 heatwave

Towards 'higher' spatial resolution

LDAS-Monde forced by AROME atmospheric fields from Météo-France at 2.5km x 2.5km spatial resolution (aggregated from 1.3km x 1.3km spatial resolution), assimilation of LAI300 CGLS

LDAS-Monde: DA specific patterns

LDAS-Monde: DA specific patterns

Towards 'higher' spatial resolution

 LDAS-Monde forced by AROME atmospheric fields from Météo-France at 1km x 1km spatial resolution from summer 2019, assimilation of LAI300 CGLS

SWI (1-4cm) OCT 2019 (SEKF)

Evaluation vs ESA-CCI v4.5 Combined product (2017-2018, 10kmx10km)

0.8

0.7

0.6

Conclusions & Prospects (1/2)

LDAS-Monde: combining LSM, satellite EOs and atmospheric forcing

Great potential to monitor and forecast the impact of extreme weather on LSVs

LDAS-Monde provides a climatology as reference for anomalies of LSVs

Significant anomalies trigger more detailed monitoring and forecasting activities at higher spatial resolution

LDAS-Monde ready for use in various applications

- Reanalyses of land ECVs
- Water resource / drought / vegetation monitoring
- Detection of severe conditions over land and initialisation of LSVs forecast

Collaborations with different national meteorological services, research institutes, service providers

ANAM (Burkina-Faso), BoM (Australia), CESBIO, Delft Uni., Monash Uni. Agro-meteorological department of Météo-France

Conclusions & Prospects (2/2)

LAI DA can improve RZSM but LAI is available every 10-day at best

VOD available daily (X-, C-, L- Band) could be used as a surrogate of LAI (?) *

Sigma0 contains information on both SSM and vegetation

- Assimilation of level1 data**
- → Al in support of data assimilation (observation operators)

Impact of the initial conditions on LSVs forecast up to 15-d ahead

Use the control member of ECMWF ensemble as atm. forcing*

Higher spatial resolution

>~1km atm. forcing over AROME domain, <1km satellite observations

Assimilation of snow data

→IMS, ESA CCI+ snow cover

Open LDAS-Monde freely available:

https://opensource.umr-cnrm.fr/projects/openIdasmonde contact: clement.albergel@meteo.fr @Calbergel

* : PhD of Anthony Mucia, CNRM (MOPGA)

**: PhD of Daniel Shamambo, CNRM

Assimilating new types of observations

ASCAT derived SSM is obtained from radar backscatter measurements:

Assimilating radar backscatter instead of SSM using the Water Cloud Model fed by modelled SSM and LAI

LDAS-Monde global evaluation (in a nutshell!)

Histograms of score <u>differences</u>: Analysis – Openloop (Correlation, RMSD)

Study the vegetation and terrestrial water cycles

Latitudinal plots of score <u>differences</u>: Analysis – Model (Correlation, RMSE)*

!! DASHED LINE IS THE 0 VALUE !!

0.02

-0.02

0.02

0.06

-60

-0.02

Evaluation against river discharge

- River discharge from 982 stations
- NSE values are computed for each stations (monthly values scaled to the drainage area)
- Normalised Information Contribution used to quantify improvment/degradation

N stations >2-yr of data Analysis impact > 3 %				
254 (26 %)				
Impact is >+3 %	Impact is < -3 %			
189 (74 %)	65 (26 %)			

Evaluation against in situ SSM

> 900 stations Score for the analysis

R: 0.68

UbRMSD: 0.058 m⁻³.m⁻³

Bias: 0.078 m⁻³.m⁻³

Evaluation against Fluxnet2015 (evap)

Evapotranspiration from 85 stations (2010-2015), NIC on R values

Normalized Information Contribution (NIC) based on R values, LDAS_Monde EKF-OL

Score for the analysis

R: 0.73

UbRMSD: 29.60 w.m⁻²

Bias: 4.64 w.m⁻²

IMPACT FACTOR 4.118

an Open Access Journal by MDPI

Data Assimilation of Satellite-Based Observations into Land Surface Models

https://www.mdpi.com/journal/remotesensing/special_issues/LSM

Guest Editor

Dr. Clement Albergel

Météo-France/CNRS, 42, Av. G. Coriolis31057 Toulouse Cedex 1, France

Website 1 | Website 2 | E-Mail

Interests: land surface modelling; remote sensing; data assimilation

Guest Editor

Dr. Emanuel Dutra

Instituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon, FCUL, Campo Grande,

Lisbon, Portugal Website | E-Mail

Interests: meteorology; hydrology; numerical weather prediction; climate modeling

Guest Editor

Dr. Sujay Kumar

Hydrological Sciences Lab, NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD, 21042, USA

Website | E-Mail

Interests: land surface modeling, data assimilation, remote sensing, high-performance computing, machine learning

Guest Editor

Dr. Christoph Rüdiger

Department of Civil Engineering, Faculty of Engineering, 23 College Walk, Monash University, VIC 3800, Australia (Clayton campus)

Website | E-Mail

Interests: soil moisture; remote sensing; hydrology; climate change

Guest Editor

Dr. Dongryeol Ryu

Department of Infrastructure Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria 3010, Austrilia

Website | E-Mail

Phone: +61-3-8344-7115

Interests: remote sensing; hydrological modelling; land surface processes; environmental

data analysis; scientific data visualisation; woodwork

Dr. Nemesio Rodriguez-Fernandez

Centre d'Etudes Spatiales de la Biosphère (CESBIO), Centre National de la Recherche Scientifique (CNRS), 18 avenue. Edouard Belin, bpi 2801, 31401 Toulouse cedex 9,

France

Website | E-Mail

Phone: +33 561 55 8577

Interests: microwave remote sensing; soil moisture; biomass; interferometry; neural

networks; data assimilation

