Snow depth observations from Sentinel-1 over the Northern Hemisphere mountain ranges

H. Lievens^{1,2}, M. Demuzere³, H.-P. Marshall⁴, R. Reichle⁵, L. Brucker⁵, I. Brangers¹, P. de Rosnay⁶, M. Dumont⁷, M. Girotto⁵,
W. Immerzeel⁸, T. Jonas⁹, E. Kim⁵, I. Koch¹⁰, C. Marty⁹, T. Saloranta¹¹, J. Schöber¹² and G. De Lannoy¹

CSNOW The importance of snow

Snow covers ±20% of the Northern Hemisphere

Global cooling effect

- Reflects ±90% of incoming solar radiation, vegetation only 10-20%
- Reduces ground heat exchange with the atmosphere

Critical water resource

- Drinking water for >1 billion people
- 75% of the agricultural water use in western US
- Hydropower generation, industry, ...

Flood and avalanche prediction, wildlife migration, tourism, ...

an Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Current snow depth estimates

Models: poor snowfall

SNOW

- Passive microwave: coarse
- Airborne observations: local

We lack basic understanding of how much snow we have on Earth, particularly in mountain areas

SNOW Current snow depth estimates

Active microwave remote sensing

- Preferred frequency (Ku-band) not in space
- Adequate satellite observations only in C-band (e.g. Sentinel-1)

2-satellites (1A & 1B) 5.4 GHz (C-band) radar 5 m x 20 m resolution 6-day repeat cycle Long-term continuity

Sentinel-1 backscatter time series

Sentinel-1 snow depth algorithm

Snow Depth (SD) = Snow Index (SI) × Scale Factor (SF) × Snow Presence (SP)

• Processing

- Sentinel-1 data: Google Earth Engine and HPC
- Full archive over Northern Hemisphere (> 20°N), updated continuously
- 1-km² spatial resolution and ~weekly temporal resolution
- Automated with ~5 days latency

SNOW In situ measurements

- Snow depth measurements (point-scale) in mountain areas for Sep 2016 Aug 2018
- 4175 grid cells with validation data
 - Global networks from NOAA (GHCN-D) and ECMWF (SYNOP)
 - Regional networks over the US, Canada, Alps, Scandinavia, Himalaya, ...

Sentinel-1 spatial validation

2018 Month	R _s overall	R _s between ranges	R _s within ranges
Dec	0.67	0.96	0.58
Jan	0.72	0.93	0.60
Feb	0.76	0.92	0.72
Mar	0.69	0.85	0.67
Apr	0.72	0.84	0.60

Sentinel-1 snow depth time series

Snow depth time series validation

Inter-annual differences (Feb '18 – '17)

SNOW

11

Top-100 mountain range snow volumes

- Algorithm improvements
 - Detecting onset of snowmelt (+ masking of retrievals afterwards)
 - Wet snow causes strong absorption of radar signal: uncertain retrievals
 - Detection: $\Delta \sigma^0 / \Delta t < threshold$

April 1-7, 2018

- Data assimilation
 - Sentinel-1 snow depth reader implemented in NASA LIS framework
 - Next: Impact of assimilating Sentinel-1 snow depth retrievals on model simulations of snow depth and SWE, discharge, other energy/water balance components
 - Challenges:
 - Bias between modelled and observed snow depth
 - N observations depends on location: unequal updates, unequal observation uncertainties

- Field campaigns
 - C-band quad-pol radars (3) deployed in Idaho and Colorado, USA (SnowEx sites)

- Field campaigns
 - C-band quad-pol radars (3) deployed in Idaho and Colorado, USA

CSNOW Ongoing activities

- Field campaigns
 - Continuous radar & snow measurements: improved understanding
 - Scattering mechanisms increasing C-band σ^0_{vh}
 - Volume scattering on anisotropic ice crystals?
 - Volume scattering on clusters of ice crystals?
 - Multi-scattering on snow layer interfaces?
 - Diffraction, forward scattering, ground reflection?
 - Scattering impacts from
 - Wet snow
 - Rain on snow
 - Ice lenses
 - Snow microstructure
 - Snow stratigraphy
 - Substrate and vegetation conditions

SNOW Conclusions

- First satellite-based snow depth observations in Northern Hemisphere mountains
 - 1-km² spatial and ~weekly temporal resolution
 - Reasonably accurate over space and time
 - Data available through https://ees.kuleuven.be/project/c-snow/
- Ongoing activities
 - Potential for data assimilation
 - Algorithm improvements
 - Wet snow detection
 - Field-campaigns with tower-based radar sensors in US Rocky Mountains
- More info
 - Lievens, H., Demuzere, M., Marshall, H.-P., Reichle, R.H., Brucker, L., Brangers, I., de Rosnay, P., Dumont, M., Girotto, M., Immerzeel, W.W., Jonas, T., Kim, E.J., Koch, I., Marty, C., Saloranta, T., Schöber J., and De Lannoy, G.J.M., Snow depth variability in the Northern Hemisphere mountains observed from space, *Nature Communications*, 10, 2019
 - Website: <u>https://ees.kuleuven.be/project/c-snow/</u>
 - Email: hans.lievens@kuleuven.be