

Copernicus Emergency Management Service (CEMS)

SMOS Soil Moisture: Potential within CEMS Flood Forecasting at ECMWF

Calum Baugh

Copernicus EU

Toni Jurlina, Heather Lawrence, Christel Prudhomme, Patricia de Rosnay, Francesca di Giuseppe, Matthias Drusch

www 🔿

ernicus.eu

- Provides information for
 emergency response to
 different natural, man-made
 &/or humanitarian disasters
- Composed of
 - on-demand mapping
 - early warning & monitoring systems for <u>floods (EFAS &</u> <u>GloFAS)</u>, droughts and forest fires

• Operational CEMS-Floods is made of 4 centres executed by different consortia, overseen by JRC

European & Global Flood Forecasts

Commission

Europe's eyes on Earth

General Modelling Framework

Soil Moisture for Initialisation

• Accurate estimates of antecedent soil moisture conditions are required

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

GIOFAS Soil Moisture: Data Assimilation via H-TESSEL

European Commission

 SMOS soil moisture Level 2 not available in NRT

- Created a Level 2 NRT soil moisture from Neural Network processor of Level 1 $\rm T_b$ and ECMWF soil temperature against SMOS SM L2

 Pearson Correlation >0.7 in most of world

 Standard deviation of differences <0.05 m³ m⁻³

CMWF

EAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Rodriguez-Fernandez et al., 2017

Assessing SMOS DA Impact on GloFAS

- SMOS soil moisture L2 NN (ECMWF trained) product assimilated into IFS since 46r1 (12th June 2019)
- What impact has this had upon GloFAS streamflow forecasts?

Experiment Design:

- IFS Analysis Data Denial Experiment
 - Cycle 45r1, TCo 399 grid, 0.25° x 0.25° horizontal resolution, climate v015
 - 1st March 2017 21st May 2018
 - 1) LDAS without SMOS assimilation, 2) LDAS with SMOS assimilation
- Outputs used to force GloFAS at 24h timestep
- Assess GloFAS streamflow predictions vs:
 - In-situ in USA & Australia
 - GIOFAS ERA-5

• 283 locations with daily streamflow

	R	Bias	KGE _{mod}
Without SMOS DA	0.428	0.840	-0.504
With SMOS DA	0.420	0.812	-0.472

$KGE_{mod} = 1 - \sqrt{(r-1)^2 + (\beta - 1)^2 + (\gamma - 1)^2}$

 $r = \frac{cov_{s,o}}{\sigma_s \cdot \sigma_o}$, $\beta = \frac{\mu_s}{\mu_o}$, $\gamma = \frac{\sigma_s/\mu_s}{\sigma_o/\mu_o}$

 $KGE_{mod}Skill\,Score = \frac{KGE_{mod}[w\,SMOS] - KGE_{mod}[w/out\,SMOS]}{WGE}$

- 40 locations where KGE_{mod} Skill Score > 0.05
 - Many such locations _ have low KGE_{mod} values
- River regulation affects streamflow skill
 - But no correlation with _ impact of SMOS

VF

European Commission

32 locations with daily streamflow

- North shows decline in KGE_{mod} Skill Score with SMOS
 - 9 locations show an improvement
- Neutral results in Murray-Darling

WF

- Small impact upon low flows
 - Greatest differences in upper Amazon and Indonesian archipelago

Global Differences: High Flows

- Impact of SMOS assimilation on high flows more pronounced
- Broader latitude band of difference
- Still no clear spatial trend

Impact upon Simulated Hydrographs

- Differences most pronounced at high flows
- Direction of difference has no clear trend

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

- SMOS already being used automatically in CEMS Floods GloFAS through ECMWF LDAS
- GloFAS experiments show that SMOS data assimilation has a small impact upon streamflow
 predictions
- Most pronounced impact at high flows
 - Future analyses to look at high flows / flood event case studies
- Future work looking at impact upon EFAS
 - Fully calibrated hydrological model in Europe
 - Independent from LDAS
 - SMOS soil wetness to possibly inform flood susceptible areas

