Assimilation of the SCATSAR-SWI with SURFEX: Resolution studies over Austria*

Jasmin Vural¹, Stefan Schneider¹, Bernhard Bauer-Marschallinger², Alexander Gruber³, Klaus Haslinger¹

¹Zentralanstalt für Meteorologie und Geodynamik; Vienna, Austria ²Department of Geodesy and Geoinformation, TU Wien; Vienna, Austria ³Department of Earth and Environmental Sciences, KU Leuven; Belgium *Research project EHRSOMA funded by a EUMETSAT fellowship

Satellite inspired hydrology in an uncertain future Reading, 27.11.2019

Motivation	Surface model	Observations	DA system	Verification	Summary	2/10
Motivat	tion					

Soil moisture assimilation can improve NWP...

... under the right circumstances

Motivation	Surface model	Observations	DA system	Verification	Summary	2/10
Motiva	tion					

Soil moisture assimilation can improve NWP...

... under the right circumstances

- optimise use of observations & observation error
- valuate benefit of higher resolution

Motivation	Surface model	Observations	DA system	Verification	Summary	3/10			
Data assimilation with SURFEX									
SURFEX	K Offline Data	Assimilation	n (SODA)						

Motivation	Surface model	Observations	DA system	Verification	Summary	3/10
Data a	ssimilation w	vith SURFE	Х			
SURFEX	K Offline Data	Assimilation	ı (SODA)			
⊳ simp	lified Extended I	Kalman Filter				
	orographic f	viction				
Snow processes Bulk to detailed snow process models	orgraphic h	Town:				
Lakes :	atural land surface : nergy, water, carbon fluxes ydrological and egetation processes	Vegetation processes	Aerosols: chemical emission aerosols, dust, sea salt			
Surface fluxes	del Sea:	Bound	lary layer: face boundary layer			
ion et al.	Surface f 1D mixin	luxes glayer				
© Mass		SUI				

Motivation	Surface model	Observations	DA system	Verification	Summary	4/10

Observations: SCATSAR-SWI

c) 1km SCATSAR-SWI | T=5 | Daily Coverage Sentinel-1A+B & MetOp-A+B ASCAT | 2017 07 24

Copernicus Global Land Service

the

provided freely via

interna

Observations: SCATSAR-SWI

Motivation	Surface model	Observations	DA system	Verification	Summary	5/10
Observa	tion error:	Triple Collo	cation Ana	alysis		

• Estimation of error variances of soil moisture signal Θ_{true}

$$\Theta_{\text{meas}} = \alpha + \beta \Theta_{\text{true}} + \epsilon$$
$$\Rightarrow \sigma_{\epsilon}^{2}$$

• Kalman gain:

```
\mathbf{K} = \mathbf{B}\mathbf{H}^{\mathcal{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathcal{T}} + \mathbf{R})^{-1}
```

Motivation	Surface model	Observations	DA system	Verification	Summary 5/10
Observ	ation error: T	riple Col	location Ar	nalysis	
 Estima of soil 	ition of error var moisture signal	$\Theta_{ m true}$	1.0 - SURFEX 0.8 - 0.6 -		urban I [192] forests II [26350] herbaccous, shrub II [2040] crops II (35432) bare land II [3]
$\Theta_{ m me}$	$ \alpha_{\text{ras}} = \alpha + \beta \Theta_{\text{true}} $ $ \Rightarrow \sigma_{\epsilon}^{2} $	$+\epsilon$	0.4 - 0.2 - 1.0 - SCATSAR		sswamp, inland waters II [163] ssburban II [1684] vineyards II [46] all covers
• Kalma	n gain:		Ho 0.8 - Part 0.6 - U 0.4 -		urban I (185) forests II (25746) herbaceous, shrub II (1981) crops II (34438) bare land II (3) swamp, inland waters II (161) suburban II (1588)
K =	$\mathbf{B}\mathbf{H}^{T}(\mathbf{H}\mathbf{B}\mathbf{H}^{T}+$	$(\mathbf{R})^{-1}$	Ö 0.2		all covers

1.0 - SMAP

0.000

0.025 0.050

0.075 0.100

 σ_{ϵ} / m³m⁻³

0.8

0.6

0.4

0.2

urban I [182]

forests II [24523] herbaceous, shrub II [1887]

crops II (32892) bare land II (3) swamp, inland waters II (1491

suburban II [1582] vineyards II [46] all covers

0.125 0.150 0.175

Motivation	Surface model	Observations	DA system	Verification	Summary	5/10
Observa	tion error:	Friple Collo	cation Ana	alysis		

 Estimation of error variances of soil moisture signal Θ_{true}

$$\Theta_{\text{meas}} = \alpha + \beta \Theta_{\text{true}} + \epsilon$$
$$\Rightarrow \sigma_{\epsilon}^{2}$$

Kalman gain:

 $\mathbf{K} = \mathbf{B}\mathbf{H}^{\mathcal{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathcal{T}} + \mathbf{R})^{-1}$

• Apparent cover dependency mostly insignificant

Motivation	Surface model	Observations	DA system	Verification	Summary	6/10
Tho da	ta assimilati	on system				

system

- June 2018 (1 month spin-up)
- Austrian domain

- June 2018 (1 month spin-up)
- Austrian domain
- 2.5 km vs. 1.25 km
- Global vs. local observation error

Jasmin Vural | Assimilation of the SCATSAR-SWI with SURFEX: Resolution studies over Austria

Jasmin Vural | Assimilation of the SCATSAR-SWI with SURFEX: Resolution studies over Austria

Motivation	Surface model	Observations	DA system	Verification	Summary	8/10
		— • • • • • •				

Verification against T_{2m} & HU_{2m} of Austrian TAWES stations

Global vs. local obs. error

- no dependency on altitude
- no dependency on land cover

Motivation	Surface model	Observations	DA system	Verification	Summary	8/10

Verification against T_{2m} & HU_{2m} of Austrian TAWES stations

Global vs. local obs. error

- no dependency on altitude
- no dependency on land cover

2.5 km vs. 1.25 km

- improvement for day time
- degradation for night time
- adapted model dynamics problematic when soil cool

Jasmin Vural | Assimilation of the SCATSAR-SWI with SURFEX: Resolution studies over Austria

Motivation	Surface model	Observations	DA system	Verification	Summary	10/10
Summa	ry & Outloo	ok				

- Observation error obtained with Triple Collocation Analysis
 - ▷ Water balance: visible impact, unclear pattern
 - \triangleright NWP: almost no impact on $T_{\rm 2m}$ & $HU_{\rm 2m}$
- Increasing grid sampling to 1.25 km
 - Water balance: small improvement
 - ▷ NWP: day time performance improved
 - night time might profit of better model dynamics

Motivation	Surface model	Observations	DA system	Verification	Summary	10/10
Summary & Outlook						

- Observation error obtained with Triple Collocation Analysis
 - ▷ Water balance: visible impact, unclear pattern
 - \triangleright NWP: almost no impact on $T_{\rm 2m}$ & $HU_{\rm 2m}$
- Increasing grid sampling to 1.25 km
 - Water balance: small improvement
 - NWP: day time performance improved
 - night time might profit of better model dynamics
- ▷ Surface DA on 500 m
- Run computations on European domain