

*Photo: Marco Guérin

Hydrological data assimilation using machine learning

<u>Marie-Amélie Boucher</u>, John Quilty and Jan Adamowski marie-amelie.boucher@usherbrooke.ca

H-SAF/HEPEX workshop, Reading U.K., Nov. 28 2019

Machine Learning and streamflow forecasting

- Research : ML techniques have been applied by to solve hydrology-related problems for more than 25 years
- Operationally : forecasting agencies rarely use ML-based models for streamflow forecasting (e.g., Abrahart et al. 2012)
- What if ML techniques were used not to replace hydrological models, but in support of hydrological models?
 - Improve portions of the forecasting chain that are strictly mathematical (e.g., data assimilation)

Hypotheses :

- 1. Neural networks can be used to efficiently perform data assimilation (updating the state variables according to available hydro-meteorological observations) in a simple rainfall-runoff model.
- 2. Extreme Learning Machines outperform Multilayer Perceptrons for data assimilation in terms of quality indicators typically used by the hydrological ensemble forecasting community (CRPS, reliability diagram, etc.).

Catchments :

Catchments :

 T_{ABLE} – Separation of the database in three portions for calibration, validation and test.

Name	Calibration	Validation	Test
Μ.	1970/01/01-2005/12/31	2006/01/01-2011/12/31	2012/01/01-2015/12/31
S.	1970/01/01-2005/12/31	2006/01/01-2011/12/31	2012/01/01-2015/12/31
Ο.	2000/01/01-2005/12/31	2006/01/01-2008/12/31	2009/01/01-2010/12/31
LO	1964/01/01-1999/12/31	2000/01/01-2006/12/31	2007/01/01-2011/12/31

Input variable selection :

- Based on conditional mutual information (CMI, Cover and Thomas 2006; Galelli et al. 2014)
- Information-theoretic measures : TIM, an open-source C++ library¹
- CMI calculated from a pool of potential input variables : daily streamflow, daily average temperature and daily vertical inflows, all for 1-15 days before t₀.

^{1.} http://www.cs.tut.fi/%7Etimhome/tim/tim.htm

⁷ of 19

Methodology Training philosophy for NN ensembles :

Hydrol. Earth Syst. Sci., 14, 603–612, 2010 www.hydrol-earth-syst-sci.net/14/603/2010/ © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License.

An experiment on the evolution of an ensemble of neural networks for streamflow forecasting

M.-A. Boucher, J.-P. Laliberté, and F. Anctil

Chaire de recherche EDS en prévisions et actions hydrologiques, Département de génie civil, Université Laval, Pavillon Pouliot, Québec, G1K 7P4, Canada

Received: 9 September 2009 – Published in Hydrol. Earth Syst. Sci. Discuss.: 6 October 2009 Revised: 9 March 2010 – Accepted: 19 March 2010 – Published: 30 March 2010

Input Variable Selection

TABLE – Selected input variables and maximum number of hidden neurons for each catchment $(1+3 \times \text{Nb. input variables}, \text{Hecht-Nielsen}, 1990)$

Catchment	Inputs	Max. Nb.
	(same for ELM and MLP)	of hidden
		neurons (N)
Mistassibi	Q_{t-2} to Q_t , T_{t-5} to T_t	28
Schwuerbitz	Q_{t-10} to Q_t , ${\mathcal T}_{t-1}$ and ${\mathcal T}_t$	40
Ourthe	Q_{t-3} to Q_t , ${\mathcal T}_{t-1}$ to ${\mathcal T}_t$	19
Los Idolos	Q_{t-5} to Q_t , \mathcal{T}_{t-2} to \mathcal{T}_t and P_{t-5} to P_t	46

MLP : evolutions of scores with the number of epochs, for different number of hidden neurons

Evolution of scores with the number of hidden neurons, fixed number of training epochs for MLP

Example reliability diagram for Schwuerbitz :

 5 epochs and 8 neurons provides good reliability for MLP

 $\ensuremath{\mathrm{TABLE}}$ – Final architectures for the neural networks

Catchment	MLP	ELM	
Mistassibi	20 epochs and 10 neurons	6 neurons	
Schwuerbitz	5 epochs and 8 neurons	8 neurons	
Ourthe	5 epochs and 19 neurons	5 neurons	
Los Idolos	5 epochs and 20 neurons	10 neurons	

Hydrograph, Mistassibi catchment (ELM, 6 neurons)

Logarithmic score, perfect forecasts

CRPS+decomposition, perfect forecasts, for MLP only

Conclusions and future work

- Hypothesis 1 : Verified (for GR4J and given catchments). Neural networks can indeed be used to perform DA.
 - Perform tests on different hydrological models? Distributed? Physics-based?
 - □ More catchments !
- Hypothesis 2 : Not verified. In our case, the opposite is true.
 MLP outperforms ELM
 - Testing other types of NN? Other machine learning techniques?
- Snow-related state variables?

Conclusions and future work

HEPEX data assimilation testbed ?

- □ Different models
- □ Different DA techniques
- Several catchments

Boucher M-A, Quilty J. and Adamowski J. (2019?) Data assimilation for streamflow forecasting using Extreme Learning Machines and Multilayer Perceptrons, *Under review for Water Resources Research*

marie-amelie.boucher@usherbrooke.ca

References

- Abrahart R.J. et al. (2012), Two decades of anarchy? emerging themes and outstanding challenges for neural network river forecasting, *Progress in Physical Geography*, **36**, 480–513.
- Boucher M.-A., Laliberté J.-P. and Anctil F. (2010), An experiment on the evolution of an ensemble of neural networks for streamflow forecasting, *Hydrology and Earth System Sciences*, **14**, 603–612.
- Cover T.M. and Thomas J.A.(2006), Elements of Information Theory, 2nd edition, Wiley-Interscience, 776 pages.
- Galelli S., Humphrey G.B., Maier H.R., Castelletti A., Dandy G.C. and Gibbs M.S. (2014), An evaluation framework for input variable selection algorithms for environmental data-driven models, *Environmental Modelling and Software*, 62, 33–51.
- Hecht-Nielsen R. (1990), Neurocomputing, , Addison-Wesley, Reading, MA, 433 pp.
- Huang G.-B., Zhou H., Ding X. and Zhang R. (2012), Extreme learning machine for regression and multiclass classification, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2), 513–529.

EXTRA SLIDES

 $\ensuremath{\mathrm{TABLE}}$ – Hydro-climatic information regarding the catchments used in this study

	Area	Mean an.	Mean an.	Avg. min.	Avg. max.	Avg. min.	Avg. max.
		rainfall	snowfall	annual	annual	annual	annual
				temp.	temp.	streamflow	streamflow
	(km^2)	(mm)	(mm)	(°C)	(°C)	(mm/day)	(mm/day)
М.	8684	717	259	-42	30	0.36	10.03
S.	2419	853	22	-16	31	0.22	10.01
Ο.	1597	1004	18	-10	19	0.17	8.82
LO	455	1036	NA	8	37	0.09	28.07

Multilayer Perceptron

 $Y_{k,t}$ is the k^{th} output of the k^{th} layer at time t:

$$Y_{k,t} = b_k + \sum_{j=1}^m \left(\beta_{k,j} \cdot C(\zeta_{j,t}) \right) \tag{1}$$

 b_k is the k^{th} output layer bias, $\beta_{k,j}$ is the k^{th} output layer weight applied to the j^{th} hidden layer output on a total of m, with

$$\zeta_{j,t} = a_j + \sum_{i=1}^n \left(W_{j,i} \cdot X_{i,t} \right) \tag{2}$$

Sigmoid tangent activation function :

$$C(\zeta_{j,t}) = \frac{2}{1 + e^{-2\zeta_{j,t}}} - 1 \tag{3}$$

SHERBROOKE

Methodology

Extreme learning Machines

- Same architechture as MLP
- No iterative training
 - Randomly generated hidden layer parameters
 - Output layer weights : product of the Moore-Penrose inverse of the hidden layer output(s) and the target variable(s) (Huang et al. 2012)

$$\beta_{k,j} = T_{k,t} \cdot G(\zeta_{j,t})^{\dagger}$$
(4)

 \dagger represents the Moore-Penrose inverse, $T_{k,t}$ is the k^{th} target variable at time t and

$$G(\zeta_{j,t}) = \frac{1}{1 + e^{-\zeta_{j,t}}}$$
(5)

is the sigmoid function (most commonly adopted activation function used within ELM).

SHERBROOKE

Methodology

Scores

$$MCRPS(F, Q_{obs}) = \frac{1}{M} \sum_{t=1}^{M} \int_{-\infty}^{+\infty} (F_t(Q) - H(Q \ge Q_{obs,t}))^2 dQ$$
 (6)

 $F_t(Q)$: forecast for streamflow Q at time t (cumulative density function) $Q_{obs,t}$: observation

H : Heaviside function.

M: total number of forecast-observation pairs.

$$MLogScore(f, Q_{obs}) = \frac{1}{M} \sum_{t=1}^{M} -\log(f_t(Q_{obs,t}))$$
(7)

 f_t : forecast for streamflow Q at time t (probability density function) $f_t(Q_{obs,t})$: probability density corresponding to the observed streamflow value.

Results (with EnKF)

Results (with EnKF)

