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1. Introduction (1)
Satellite based data...
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Houser et al. (2012)

Class Observation Ideal Technique Ideal Time Scale Isdeal Space|Currently available
cale data
Land cover/change |optical/IR daily or changes |1km AVHRR, MODIS,
NPOESS
Leat area & greenness |optical /IR daily or changes |1km AVHRR, MODIS,
NPOESS
Parameters s 1. 4, optical /IR daily or changes |1km MODIS, NPOESS
Emissivity optical /IR daily or changes |1km MODIS, NPOESS
Vegetation structure |lidar daily or changes |100m ICESAT
Topography in-situ survey, radar |[changes lm-1km JGTOPO30, SRTM
Precipitation microwave/IR howly 1km |TRMM, GPM, SSMI,
GEQ-IR, NPOESS
Wind profile Radar howly 1km IQuicksCAT
Air humidity & temp |IR, microwave howly 1km TOVS, AIRS, GOES,
Forcings MODIS, AMSR
Surface solar radiation |optical /IR hourly 1km GOES, MODIS,
CERES, ERBS
Surface LW radiation IR howtly 1km IGOES, MODIS,
CERES, ERBS
Soil moisture microwave, IR daily 1km SSMI, AMSR, SMOS,
change NPOESS, TRMM
Temperature IR, in-situ houwrly-monthly |1km IR-GEO, MODIS,
AVHRR_TOVS
Snow cover or SWE  |optical, microwave |daily or changes |10m-100m |SSMI, MODIS, AMSR,
States AVHRR, NPOESS
Freeze/thaw racdar daily or changes |10m-100m JQuickscat, IceSAT,
C1ryvoSAT
Ice cover radar, lidar daily or changes |10m-100m JIceSAT, GLIMS
Inundation optical/microwave |daily or changes |100m MODIS
Total water storage  |gravity changes 10km IGRACE
Evapotranspiration  |optical /IR, in-situ _ |howly 1km MODIS, GOES
Streamflow microwave, laser hourly 1m-10m ERS2, TOPEX /
POSEIDON, GRDC
Carbon tlux In-situ hourly 1km In-situ
Fluxes Solar radiation optical, IR hourly 1km MODIS, GOES,
CERES, ERBS
Longwave radiation |optical, IR howly 1km MODIS, GOES
Sensible heat flux IR hourly 1km MODIS, ASTER,
JGOES

Table 1. Characteristics of remotely sensed hydrological observations potentially available
within the next decade.




1. Introduction (2)
How to produce a forecast?
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1. Introduction (3)
Sources of uncertainty

o+ Prediction of
1200_( — Forcingvariables —_— | HYdrO|Oglcal
System (HS) are
often poor due to

o Initial
conditions,

o Forcing errors,

o Inadequate
model structure
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Initial conditions

“Both model predictions and observations are IMPERFECT and we
wish to use both synergistically to obtain a more accurate result”. (Walker & Hoser, 2007)



1. Introduction (4)

Data Assimilation (DA)
N

o ...holds considerable potential for Improving
hydrological predictions....

I (-
iInformation present in %

imperfect models —

tmodels |
physically consistent
I to produce| representations
uncertain data estimates of the dynamical

behavior of a system




1. Introduction (5)

The aim of the study
N

1) to evaluate the feasibility of assimilating snow

satellite data (SCA & SWE) through a conceptual

hydrological model,
2) to apply different assimilation technigues,

3) to assess H SAF products in Real Time DA Tools



Analysis

Model Forecast

2. Methodology: DA (1)

DA challenge
2 1

The purpose is to improve the initial state of the model, which later makes a
forecast for the next time step.

Given: a (noisy) model of system dynamics
Find: the best estimates of system states X from (noisy) observations Z.

1. Variational Data Assimilation 2. Sequential Data Assimilation (SeqDA):
(VarDA): o Observations are used as soon as they are
o Correction of initial conditions of a available to correct the present state of a
n}o%el and obtairl{lingbthe best ovgrall fit model (sequentially updated).
of the state to the observations by . - -
minimizin? over space and time an . Eg:}ﬁgg‘? w?cgannd;ctl‘i\gnssystem is driven by
objective function Y :
o Behavior of the system is driven by
accuracy of initial conditions. Houser et al. (2012)
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2. Methodology: Hydrological Model (1)

Conceptual Model: HBV

HBV hydrological model is used for rainfall-runoff
relationship:

Forcing (model inputs):

- Precipitation (P)

- Temperature (T)

- Potential Evapotranspiration (PET)

State variables:

- Snow water equivalent (SWE)
(snow pack SP + water content WC)

- Interception storage (IC)

- Soil moisture (SM)

- Upper zone storage (UZ)
- Lower zone storage (L2)

Output variables:
- Discharge (Q)

—w 0 -
1] FC 0 LP FC

RAM = (ShAF T8 E™

HZ

uz
Q= KUz (AL

HQ = KHQ"UZ o

P = Precipitation

T = Tem perature

5F = Snow

RF = Rain

Z = Elevation

PCALTL = Threshold far altitude correction
TTI = Threshold tem perature interval

IM = Infiltration

EP = Potential evapotranspiration

E 4 = Actual evapotranspiration

El = Evapoaration fram interception

SM = Soil moisture storage

FC = Maximum =soil moisture storage

LP = Limi for potential evapotranspiration

EA= SM/FCTEF SM <LFP
EA= EP SM ELP

BE TA = Sail parameter

R = Recharge

CFLUX = Capillary transpart

UZ = Storage in upper response box

LZ = Storage in lower response box
PERC = Percalation

K K, = Recession parameters
ALF A = Recesszion param eter

@p ., @, = Runoff com ponents

H@ = High flow parameter

KHQ = Recession atHGQ

Ha - =UIlevelat HQ

Schematic structure of HBV-96 model (Lindstrom et al., 1997)



2. Methodology: Imp. of DA into HBV (1)
VarDA implementation by MHE

The implementation of the HBV model follows:

Simulated
variable \ 2

Forward
Model

stateS ——> Xk — Xk + 77k

variable

« Observation

L
operator

Noise (to forcing/states)
External forcing vectors

3 !
M, (Xk—l’ ,[SYT%L un

output _— Zk Zk gk —_ ° Xk _I_ gk

—> Model and observation error with coveraince Q & R, respectively

The moving horizon estimation (MHE) for a forecast Tk=0 over an
assimilation period k=[-N+1,0] is defined as:

0 v v
mind =min > (W,[z 3 Z]+w,|
a #ok=—N#

O Adjoint models are required for the optimization to run more efficiently

Alvarado-Montero et al., 2016
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2. Methodology: Imp. of DA into HBV (2)

SegDA implementation by Kalman Filter
N

] (True —ObsY’ N (True — Model ¥ ]?JE]J;%IXIG
Ensemble Kalman Filter is ol O o '
: dJ (True—Obs) (True— Model)
the most commonly applied TTros =y =
DA in hydrological sciences o4 (True—0bs)+ &2 (True — Model ) = 0
(Liu et al. 2012) True(ofﬂode, +<y02bs):Obs-afﬂodeI +Model - 62,
True = 28 Tuopr + Model -0, _ Model + K - (Obs — Model )
« It estimates the model (co)- (0 + 02
2
variances by perturbing K = o Mocel__
‘ + ) Improved
TModet ™ Tos estimate!

model forcings and

Measurement |

7

/

sampling the model states. H

Prediction {estimate)




2. Methodology: Imp. of DA into HBV (3)

SegDA implementation by Kalman Filter

Perturbations ——

) Covariance of

Forcing vector

The states are obtained: x'=M(x",5;.u,)
The state updating from the implementation of the EnKF:

+,1 - i
X=X +K
k k k Kk )
| ____distance between observed

and simulated
— Kalman gain di —7 _ i B H . X_’i
Kk:E[XE,ZE]‘(E[ZK‘,Z[’T}Rk)_l K= A T8 T e A

Alvarado-Montero et al., 2017



2. Methodology: Imp. of DA into HBV (4)

Comparison of both techniques
B

Variational DA:

o + simultaneous technique
over several time steps

o + suitable for reanalysis

o - requires first-order
sensitivities, i.e. adjoint
code, and preferably a
smooth model

o - deterministic approach

Ensemble Kalman DA:

o + applicable on black-box
models, simple to
Implement

o + probabilistic approach

o - sequential technique,

has issues with time lags



3. Model Setup (1)
Selected pilot basin
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O Large dam reservoirs (Keban Karakaya, Ataturk...)
are located at the downstream of the basin



3. Model Setup (2)
Data
S
0 Ground Data: 18 Climate & AWOS
0 10 elevation zones (within 1125 — 3487 m)

o 1 land use type

a2 Model inputs:
« Precipitation
« Temperature
« Potential Evapotranspiration

2 Model outputs:
« Discharge
» SWE & SCA



3. Model setup (3)

Model parameters

-4
» Calibrated btw 01/10/2001 to 30/09/2008 (NSE* of 0.84)

» Validated btw 01/10/2008 to 30/09/2012 (NSE* of 0.74)

——Observed Runoff —— Modelled Runoff

900

3

3

600 -+

3

Discharge (m*/s)
B
8

o 8 8 8§

0ct-2000
Oct-2001
Oct-2002
Oct-2003
Oct-2004
Oct-2005
Oct-2006
Oct-2007

Daily Observed and simulated discharge with the HBV model for the calibration period

*Nash-Sutcliffe Efficiency (NSE)



3. Model setup (4)
Snow Recognition Product, H10

; B .
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* Cycle: Dally
* Resolution: 1to 5 km
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3. Model setup (5)

Snow Water Equivalent, H13

13 [rorm] 17-02-2011 00:00:00

RTU |
* Coverage: 25-75°N lat, 25°W-45°E long

* Cycle: Dally
e Resolution: 10-30 km (0.25 dedarees)



4. DA Application (1)
In general
I
o Hindcasting period:
o 2015-2016 (2 water years)

o Assimilated observations:
= Discharge (Q) & SCA (H10) with both methods
= Q & H10 & SWE (H13) with VarDA

o Forcings:
o Perfect forecast (Prec., Temp.)

o Warm-up (+ assimilation window in VarDA)
o 180 days

0 Lead time: '€
o 10 days




4. DA Application (2)

VarDA
.20y
o Noise terms introduced both for forcings and states
o Variables and objective function terms in the MHE
o Observation uncertainty: Q, SCA, Q+SCA, Q+SWE, Q+SCA+SWE

Variable Objective Function Term
Precipitation (P) W, (AP*)?
Model Inputs
Temperature (T) w; (AT*)?
Snow Water Equivalent Wo e (85 —s¢ )7
(SWE - SP + WC) SWE \~SWE SWE
Soil Moisture (SM) Wey (Sgy —Sem ) + Wygy (ASg,)?

Model States

Upper Zone Storage (UZ) W, (Asf,)’

Lower Zone Storage (LZ) W, , (As),)’

Snow Covered Area (SCA) | W, (Al — Acn)’
Model Outputs

Discharge (Q) w, (Q“ —Q)’




4. DA Application (3)
SegDA
S

o Stability & to properly capture uncertainty

o Selected ensemble member: 100 (probabillistic

technigue)
o Observation uncertainty: Q, SCA, Q+SCA

o Perturbations: P, T



4. DA Application (4)
Model Interfaces & performance metric

2z |

o VarDA Implementation: Deltares RTC-Tools (Schwanenberg and
Bernhard, 2013),

o EnKF Implementation: Python

o Model performance: Continuous Ranked Probability Skill Score,
CRPS.

» Zero CRPS is desired.
» Both for discharge, SCA and SWE.

n [ +o |
1 2
CRPS, = Ez f (Fe(yer) = T(ks 2 9)) dy
k:1 _—oo i
where y, | represents the value of the forecast k-L with a leadtime L, k is the
indicator of the forecast, n is the number of ensembles, F is the cumulative

distribution function, and I is a function which assumes probability 1 for
values higher or equal to the observation and 0 otherwise.




5. Results & Comparison (1)

No DA simulation (2015-2016)

o The reference hindcasting simulation to represent the model
performance without DA application (having

o For Q: NSE= 0.76, mae= 22.48 cms = 0.20 mm/day

o For SCA: NSE=0.79, mae= 11.64 %

- Q.obs 2119
—[1] Q.sim 2119
—[1] Q.sim 2119

Discharge (m3/s)

— SCA.obs Karasu
— [1] SCA.sim Karasu
[1] SCA.sim Karasu

— SWE.H13 Karasu

E — [1] SWE.sim Karasu
= [1] SWE.sim Karasu
=
2
-1
g
5
5
z
z
H
2
&

01-10-2014 01-12-2014 01-02-2015 01042015 01-06-2015 01082015 01-10-2015 01-122015 01-02-2016 01042016 01-06-2016 01082016 01-10-2016
HBV_UpdateForecast_Karasu_SWE: [1] 30-09-2016 00:00:00 GMT Current



5. Results & Comparison (2)
An exemplary hindcasting result
224y
o Var DA application
Assimilating: Q+SCA[H10]+SWE[H13]
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6. Conclusion (1)

1. Uncertainty

Even providing perfect input to the model, the model outputs contain
many uncertainties due to model and observation errors.

2. Data Assimilation
The study Is conducted to improve the consistency of the streamflow
forecasts with the observations, thus different data assimilation
techniques are employed in a mountainous basin where major part
of the discharge is originated from snow melting.

3. Various observations

Applied DA techniques consider not only discharge but also snow
observations provided from satellites.



6. Conclusion (2)

4. Added value of DA
Consideration of snow observations (H SAF products) in DA together
with discharge IMPROVES both discharge + snow output
performances in comparison with No DA control simulation.

5. Lead time performance
Due to the nature of initial conditions, the performance of the result
decreases with respect to lead time.

6. VarDA vs. SeqDA

Moving Horizon based Variational method performances are higher
than Sequential Kalman Filtering method.

7. Outlook

a. The models will be extended using numerical weather
predictions (deterministic & probabilistic) for real time forecasting
application.

b. Improved forecasts will be main input to reservoir control models
for better decision making!
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