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1. Introduction (1)

Satellite based data…
3

Houser et al. (2012)



1. Introduction (2)

How to produce a forecast?
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EVERYWHERE! 

Indicate the sources of uncertainty!



1. Introduction (3)

Sources of uncertainty
5

Prediction of 
Hydrological 
System (HS) are 
often poor due to

 Initial 
conditions,

 Forcing errors,

 Inadequate 
model structure 
and parameters

‘‘ Both model predictions and observations are IMPERFECT and we 

wish to use both synergistically to obtain a more accurate result’’. (Walker & Hoser, 2007)



1. Introduction (4)

Data Assimilation (DA)
6

 …holds considerable potential for improving

hydrological predictions….

information present in

imperfect models

physically consistent

representations

uncertain data estimates of the dynamical

behavior of a systemoptimal

to produce 



1. Introduction (5)

The aim of the study 
7

1) to evaluate the feasibility of assimilating snow

satellite data (SCA & SWE) through a conceptual

hydrological model,

2) to apply different assimilation techniques,

3) to assess H SAF products in Real Time DA Tools



2. Methodology: DA (1)

DA challenge

1. Variational Data Assimilation 
(VarDA):

 Correction of initial conditions of a 
model and obtaining the best overall fit 
of the state to the observations by 
minimizing over space and time an 
objective function

 Behavior of the system is driven by 
accuracy of initial conditions.

2. Sequential Data Assimilation (SeqDA):

 Observations are used as soon as they are 
available to correct the present state of a 
model (sequentially updated).

 Suitable when the system is driven by 
boundary conditions.
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The purpose is to improve the initial state of the model, which later makes a

forecast for the next time step.

Given: a (noisy) model of system dynamics

Find: the best estimates of system states X from (noisy) observations Z.

Houser et al. (2012)



2. Methodology: Hydrological Model (1)

Conceptual Model: HBV
9

HBV hydrological model is used for rainfall-runoff 
relationship:

Forcing (model inputs): 

- Precipitation (P)

- Temperature (T)

- Potential Evapotranspiration (PET)

State variables:

- Snow water equivalent (SWE)
(snow pack SP + water content WC)

- Interception storage (IC)

- Soil moisture (SM)

- Upper zone storage (UZ)

- Lower zone storage (LZ)

Output variables:

- Discharge (Q)

Schematic structure of HBV-96 model (Lindström et al., 1997)



The implementation of the HBV model follows: 

The moving horizon estimation (MHE) for a forecast Tk=0 over an 

assimilation period k=[-N+1,0] is defined as: 
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2. Methodology: Imp. of DA into HBV (1)

VarDA implementation by MHE

Objective 

function

states

output 

variable

External forcing vectors

Observations

 Adjoint models are required for the optimization to run more efficiently
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Alvarado-Montero et al., 2016



2. Methodology: Imp. of DA into HBV (2)

SeqDA implementation by Kalman Filter
11
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Improved 

estimate!

Objective 

function!
Ensemble Kalman Filter is 

the most commonly applied 

DA in hydrological sciences 

(Liu et al. 2012).

• It estimates the model (co)-

variances by perturbing 

model forcings and 

sampling the model states.



2. Methodology: Imp. of DA into HBV (3)

SeqDA implementation by Kalman Filter
12

The states are obtained:

The state updating from the implementation of the EnKF:
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Alvarado-Montero et al., 2017



2. Methodology: Imp. of DA into HBV (4)

Comparison of both techniques

Variational DA:

 + simultaneous technique 

over several time steps

 + suitable for reanalysis

 - requires first-order 

sensitivities, i.e. adjoint

code, and preferably a 

smooth model

 - deterministic approach

Ensemble Kalman DA:

 + applicable on black-box 

models, simple to 

implement

 + probabilistic approach

 - sequential technique, 

has issues with time lags
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3. Model Setup (1)

Selected pilot basin
14

Karasu catchment, Turkey:

Mean average discharge: 84.4 m3/s

Area: 10,275 km2

Covered by pasture, shrub and grass

Elevation between 1125 and 3487 m 

(ASL)

 Large dam reservoirs (Keban, Karakaya, Atatürk…)
are located at the downstream of the basin



3. Model Setup (2)

Data
15

 Ground Data: 18 Climate & AWOS

 10 elevation zones (within 1125 – 3487 m)

 1 land use type

 Model inputs:

 Precipitation

 Temperature

 Potential Evapotranspiration

 Model outputs:

Discharge

 SWE & SCA



3. Model setup (3)

Model parameters
16

• Calibrated btw 01/10/2001 to 30/09/2008 (NSE* of 0.84) 

• Validated btw 01/10/2008 to 30/09/2012  (NSE* of 0.74) 

Daily Observed and simulated discharge with the HBV model for the calibration period 

*Nash-Sutcliffe Efficiency (NSE)



3. Model setup (4)

Snow Recognition Product, H10
17

 Coverage: 25-75°N lat, 25°W-45°E long

 Cycle: Daily

 Resolution: 1 to 5 km

 Accuracy: POD 95 %, FAR 10 %



3. Model setup (5)

Snow Water Equivalent, H13
18

 Coverage: 25-75°N lat, 25°W-45°E long

 Cycle: Daily

 Resolution: 10-30 km (0.25 degrees)



4. DA Application (1)

In general
19

 Hindcasting period: 

 2015-2016 (2 water years)

 Assimilated observations: 
 Discharge (Q) & SCA (H10) with both methods

 Q & H10 & SWE (H13) with VarDA

 Forcings:

 Perfect forecast (Prec., Temp.)

 Warm-up (+ assimilation window in VarDA)

 180 days

 Lead time: 

 10 days



4. DA Application (2)

VarDA
20

 Noise terms introduced both for forcings and states

 Variables and objective function terms in the MHE

 Observation uncertainty: Q, SCA, Q+SCA, Q+SWE, Q+SCA+SWE

Variable Objective Function Term 

Model Inputs 
Precipitation (P) 

2( )k

Pw P  

Temperature (T) 
2( )k

Tw T  

Model States 

Snow Water Equivalent  

(SWE = SP + WC) 
2ˆ( )k k

SWE SWE SWEw s s  

Soil Moisture (SM) 
2 2ˆ( ) ( )k k k

SM SM SM SM SMw s s w s    

Upper Zone Storage (UZ) 
2( )k

UZ UZw s   

Lower Zone Storage (LZ) 
2( )k

LZ LZw s   

Model Outputs 

Snow Covered Area (SCA) 
2ˆ( )k k

Q SCA SCAw A A  

Discharge (Q) 
2ˆ( )k k

Qw Q Q  

 1 



4. DA Application (3)

SeqDA
21

 Stability & to properly capture uncertainty

 Selected ensemble member: 100 (probabilistic 

technique)

 Observation uncertainty: Q, SCA, Q+SCA

 Perturbations: P, T



4. DA Application (4)

Model Interfaces & performance metric
22

 VarDA Implementation: Deltares RTC-Tools (Schwanenberg and

Bernhard, 2013),

 EnKF Implementation: Python

 Model performance: Continuous Ranked Probability Skill Score,

CRPS.

 Zero CRPS is desired.

 Both for discharge, SCA and SWE.

𝐶𝑅𝑃𝑆𝐿 =
1

𝑛
 

𝑘=1

𝑛

 

−∞

+∞

𝐹𝑡 𝑦𝑘,𝐿 − Γ 𝑦𝑘,𝐿 ≥  𝑦𝑘

2
𝑑𝑦

where yk,L represents the value of the forecast k-L with a leadtime L, k is the

indicator of the forecast, n is the number of ensembles, F is the cumulative

distribution function, and Г is a function which assumes probability 1 for

values higher or equal to the observation and 0 otherwise.



5. Results & Comparison (1)

No DA simulation (2015-2016)
23

 The reference hindcasting simulation to represent the model 

performance without DA application (having 

 For Q: NSE= 0.76, mae= 22.48 cms ≈ 0.20 mm/day

 For SCA: NSE=0.79, mae= 11.64 %

 For SWE: NSE=



5. Results & Comparison (2)

An exemplary hindcasting result
24

 Var DA application

Assimilating: Q+SCA[H10]+SWE[H13]

Q

SCA

SWE



25

1. Uncertainty
Even providing perfect input to the model, the model outputs contain

many uncertainties due to model and observation errors.

2. Data Assimilation
The study is conducted to improve the consistency of the streamflow

forecasts with the observations, thus different data assimilation

techniques are employed in a mountainous basin where major part

of the discharge is originated from snow melting.

3. Various observations
Applied DA techniques consider not only discharge but also snow

observations provided from satellites.

6. Conclusion (1)
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4. Added value of DA
Consideration of snow observations (H SAF products) in DA together

with discharge IMPROVES both discharge + snow output

performances in comparison with No DA control simulation.

5. Lead time performance
Due to the nature of initial conditions, the performance of the result

decreases with respect to lead time.

6. VarDA vs. SeqDA
Moving Horizon based Variational method performances are higher

than Sequential Kalman Filtering method.

7. Outlook
a. The models will be extended using numerical weather

predictions (deterministic & probabilistic) for real time forecasting

application.

b. Improved forecasts will be main input to reservoir control models

for better decision making!

6. Conclusion (2)
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