

Space-based Cloud & Precipitation Observing Systems in the 2020-2040 Period (to Support NWP)

Sources and Credits

Sources Used in this presentation:

- CGMS Website
- Individual Space Agencies Websites (NOAA, EUMETSAT, JAXA, NASA, ESA, Etc)
- WMO OSCAR
- AMS, AGU, ITSC and IPWG conferences' presentations
- NASA Earth Science Technology Office (ESTO) Website
- Multiple Private companies websites

The following persons contributed to this presentation

- SATO, Yoshiaki (JMA)
- Dohy Kim (KMA)
- SeiYoung Park (KMA)
- Tobias Wehr (ESA)
- Peng ZHANG (CMA)
- ➤ K. Lukens (UMD), E. Bayler (NOAA), K. Garrett (NOAA), L. Wang (RTI), Changyong Cao (NOAA)

Agenda

Introduction

Major Objective. Background information.

Scope

What type of Space measurements and missions are we focusing on in this review?

Evolution of the Earth-Obs. Space Constellation

WMO/CGMS/CEOS coordination. Consortium of Space agencies and associated Partners. Focus on NWP needs.

Trends, Opportunities and Challenges

With a potential to impact the future evolution of the Global Observing Systems. In the 2030-2040 Timeframe.

Thoughts on Global Observing System of the Future

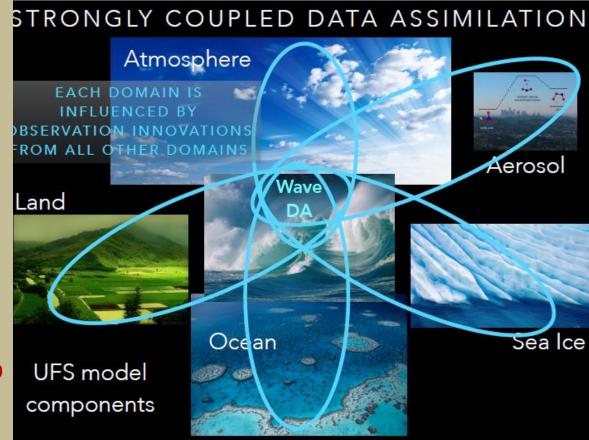
WIGOS 2040 Vision. Commercial Sector. Agile. Partnership. Optimizing the Constellation Architecture of the future.

Conclusions

Bright Future on all fronts. Double edge of NWP as driver for Future Observing Systems.

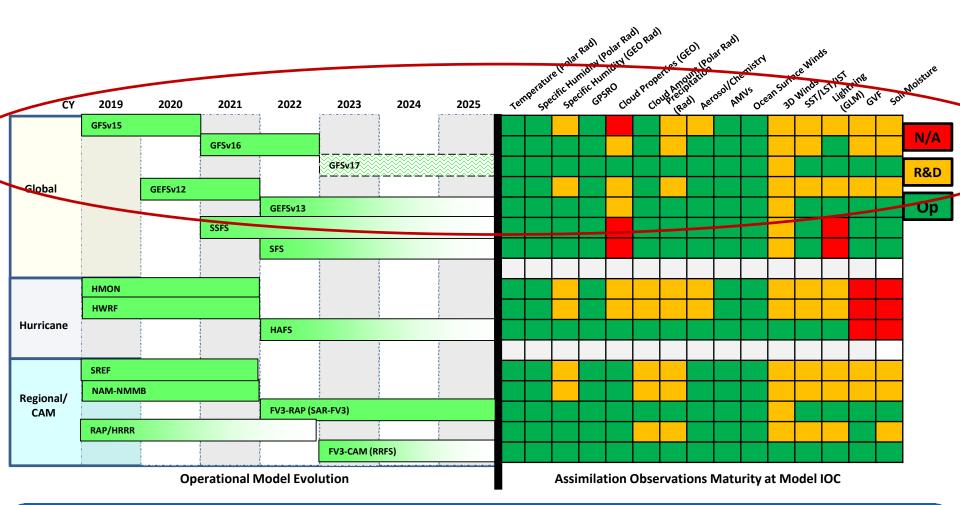
Main Objective

Disclaimers:


- This presentation is not meant to be a comprehensive presentation about every mission planned in the 2020-2040 timeframe. Instead it is meant to....
- Provide insight, for those interested in assimilating cloud and precip impacted observations, into the planning of relevant missions by the major Space Agencies, and...
- Provide hints and make educated predictions about the characteristics of future sensors and constellations (planned or not even planned yet), based on foreseen evolutions of various technologies
- No information here should be construed as actual plans for post-POR

STATES OF ALL

Trends in NWP & Environmental Monitoring: An integrated, Coupled Earth System (Monitoring & Modeling)


- Coupled Data Assimilation of future:
 For all Sensors and in All conditions.
 loT-based obs will be part of the mix
- Trends toward Higher Spatial/Vertical/Temporal resolutions
- Data Assimilation of the future will likely 'analyze' all geophysical parameters including Hydrometeors
- The data assimilation of the future will have Dual use (NowCasting and NWP), becoming a Data Fusion Tool.
- Data fusion of the future will be the main 'entry-gate' for satellite data to produce 'Earth System' analyses.
- Remote Sensing & NowCasting will likely gradually merge in the 2030-2040 Timeframe
- Will allow tremendous opportunities for 'added-value' information.

Trends In Using Satellite Atmospheric Data for Operational Environmental Prediction (NOAA Models Example)

Agenda

Introduction

Contributions. Credits. Background information.

Scope

What type of Space measurements and missions are we focusing on in this review?

Evolution of the Earth-Obs. Space Constellation

WMO/CGMS/CEOS coordination. Consortium of Space agencies and associated Partners. Focus on NWP needs.

Trends, Opportunities and Challenges

With a potential to impact the future evolution of the Global Observing Systems. In the 2030-2040 Timeframe.

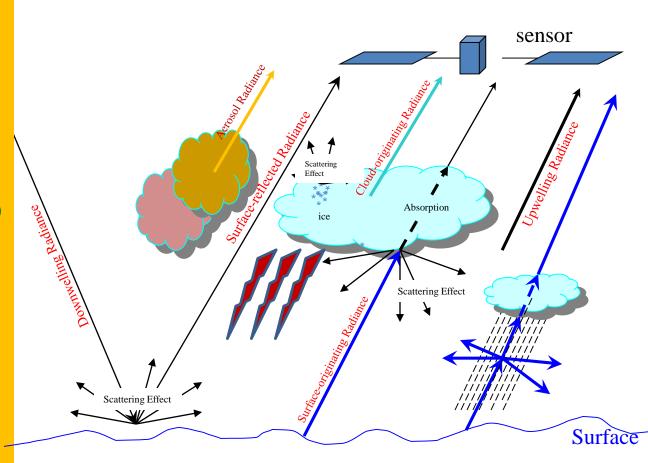
Thoughts on Global Observing System of the Future

WIGOS 2040 Vision. Commercial Sector. Agile. Partnership. Optimizing the Constellation Architecture of the future.

Conclusions

Bright Future on all fronts. Double edge of NWP as driver for Future Observing Systems.

Linking Satellite Observations to NWP


<u>Linking Satellite-based</u> <u>measurements to NWP:</u>

Satellite data is usually sensitive to:

- Atmosphere (Temperature, moisture, aerosols, trace gases,...)
- -Surface (ice, snow, biosphere, land, ocean)
- -Hydrometeors (cloud, rain, suspended ice)

NWP has traditionally focused on space-based sounding of T and Q but :

- Those measurements are also (sometimes) impacted by surface, hydrometeors, aerosols, etc
- -NWP models are evolving to become coupled Earth System models therefore needing those 'noise' signals that used to be filtered out
- -Hydrometeors are a prime example and the focus of this workshop (cloud, precip)

Cloud and Precip data are important. So are also the other NWP-relevant variables, under cloudy/precipitating conditions

Scope

	rard Looking. We will <u>not</u> try to cover existing sensors (assumed to be already known). Such as PSS series, the Metop series or the FY series
	vill mainly focus on future sensors, especially those expected in the Late 2020s, 2030s and s. With an expected relevance to NWP
The f	ocus will be on two types of observations:
	Direct measurements of Cloud and Precipitations, both liquid and frozen state
	NWP relevant measurements (such as T, Q, W) measured under cloudy or precipitation conditions
The t	type of satellite measurements that is the focus of the presentation includes:
	Microwave
	Infrared
	Active and passive
	Regular missions and new ones (regular, smallsats, cubesats, etc)
	Etc.
	the J We w 2040 The f

Across the presentation, judgement calls wil be made on which missions/sensors to highlight, driven by the expectation of their usefulness for NWP

Coming up in the late 2020-2040 Timeframe

- Missions coming up in the next two decades could be divided into:
 - Planned Missions <u>extensions</u>: continuations of JPSS, GOES, Metop, FY3/4, etc.
 - Planned or being Investigated <u>New</u> Missions: TROPICS, CIMR, EarthCare, ...
 - Not planned Missions but indications that they will be an <u>emerging capability</u> of GOS
- [2020-2030] Planned missions extensions will essentially sustain current cloud & precip. capabilities
 - With occasional improved characteristics and the particular case of EPS-SG with many new capabilities.
- [2020-2030] Planned new missions have novel/new capabilities
 - Embedded in either operational or research missions.
- [2020-2040] Emerging capabilities are speculative (not in the plan per se)
 - Based on technological trends, commercial sector emergence, etc.
 - Connecting the dots between different areas
 - What is listed in this section is not to be considered as firm plans but rather as an educated guess

Agenda

Introduction

Contributions. Credits. Background information.

Scope

What type of Space measurements and missions are we focusing on in this review?

Evolution of the Earth-Obs. Space Constellation

WMO/CGMS/CEOS coordination. Consortium of Space agencies and associated Partners. Focus on NWP needs.

Trends, Opportunities and Challenges

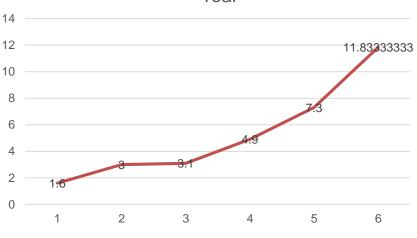
With a potential to impact the future evolution of the Global Observing Systems. In the 2030-2040 Timeframe.

Thoughts on Global Observing System of the Future

WIGOS 2040 Vision. Commercial Sector. Agile. Partnership. Optimizing the Constellation Architecture of the future.

Conclusions

Bright Future on all fronts. Double edge of NWP as driver for Future Observing Systems.


GOS Trend: Increase in Space-Faring Nations

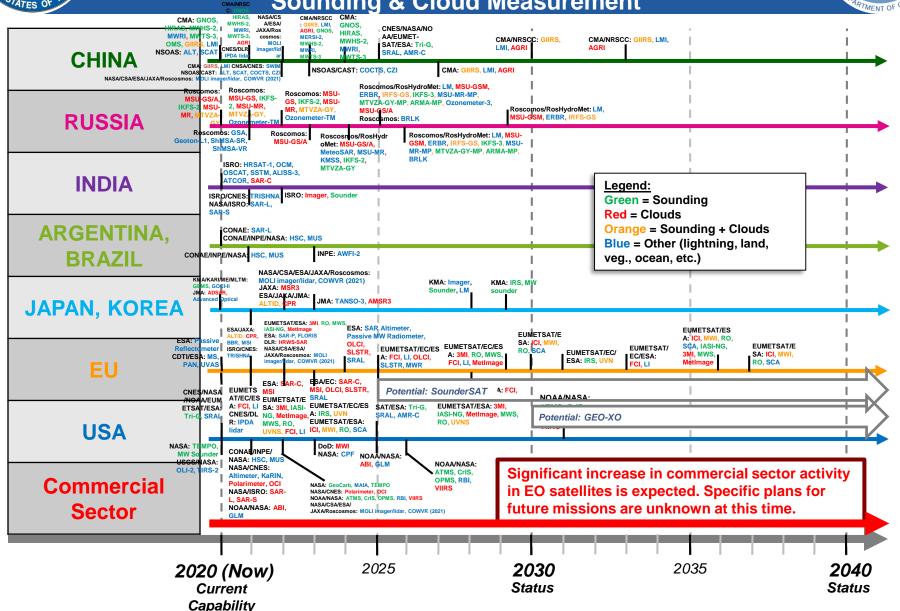
	1960- 1970	1970-1980	1980-1990	1990-2000	2000-2010	2010-2016
US	16	26	14	14	20	13
Europe	0	1	3	7	11	9
Japan	0	1	4	4	6	4
Korea	0	0	0	1	2	5
India	0	0	4	13	10	9
China	0	0	1	3	11	16
France	0	0	1	3	4	4
Russia*	0	2	4	3	3	2
Germany	0	0	0	0	2	1
Algeria	0	0	0	0	1	3
Turkey	0	0	0	0	1	3
Brazil	0	0	0	1	2	2
Total	16	30	31	49	73	71

Source and credit: World Meteorological Organization (WMO) Observing Systems Capability Analysis and Review (OSCAR) website. Mainly public-sector owned Earth-Observation satellites were included in these statistics*.

Average of Number of Satellites Per Year

Decade # Since 1960

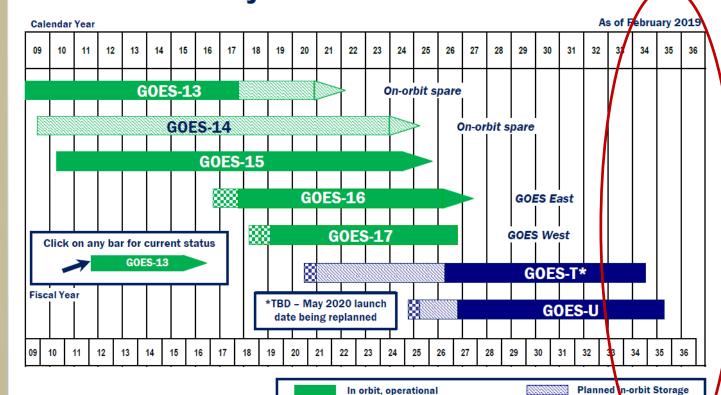
^{*}Russia has launched a large number of short-lived satellites in the 1960's.


AND ATMOSPHED

NOAA

GOS Evolution: Big Picture

NOAA GEO Plans



Current/planned Geo extension missions data will continue to offer the following for cloud and precip:

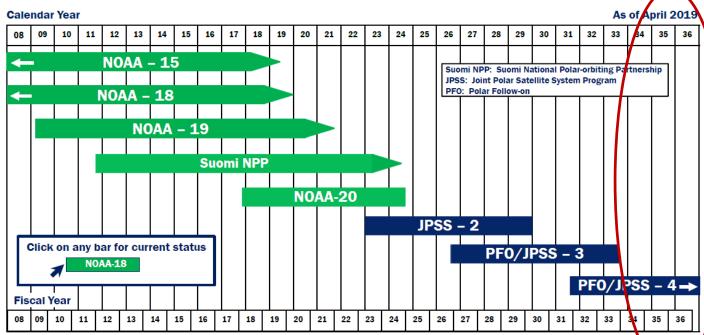
- <u>Cloud and Moisture</u> <u>Imagery</u> & (radiances)
- Cloud products (Optical Depth, Particle Size, Top Height, Phase, Pressure & Temperature
- <u>Legacy Moisture Profile</u> in rainy/cloudy situations
- <u>Legacy Vertical</u>
 <u>Temperature Profile</u> in rainy/cloudy situations
- Rainfall Rate/QPE
- Lightning
- ABI and GLM sensors

NOAA Geostationary Satellite Programs
Continuity of Weather Observations



In orbit, storage
In orbit, checkout
In orbit, checkout

Reliability analysis-based extended weather observation life estimate (60% confidence) for satellites on orbit for a minimum of one year -- Most recent analysis: June 20, 2018


NOAA LEO Plans

Current/planned LEO extension missions data will continue to offer the following for cloud and precip:

- <u>Cloud and Precip.</u> (radiances)
- Cloud and rain products
- Moisture Profile in rainy/cloudy situations
- Temperature Profile in rainy/cloudy situations
- <u>Both MW and IR-based</u> measurements
- <u>ATMS, CrIS, VIIRS</u> Sensors
- <u>Different spatial and</u> vertical resolutions

Approved:

Assistant Administrator for Satellite and Information Services

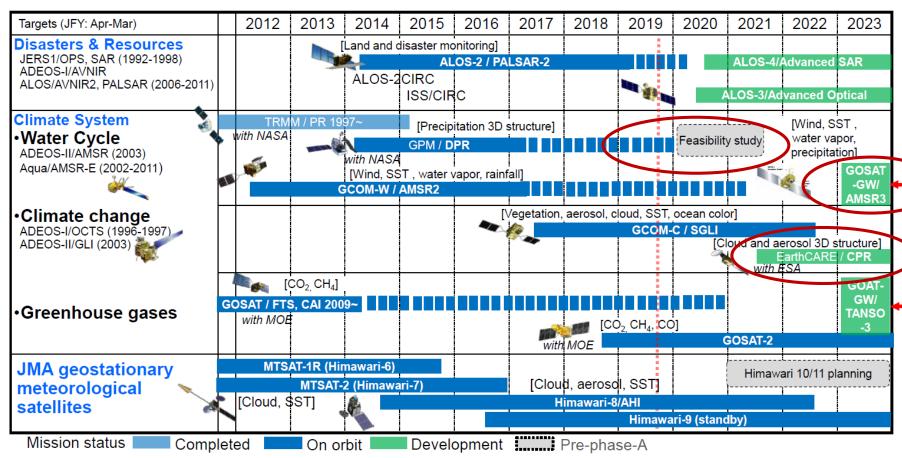
In orbit and operating

Launched before Jan 2008

Planned Mission Life, from Planned Launch Oate

Planned Mission Life Beyond 2036

Reliability analysis-based extended weather observation life estimate (60% confidence) for satellites on orbit for a minimum of one year — Most recent analysis: July 2018


A trend to watch: 3D-wind profiles using constellations of MW/IR sounders, therefore in cloudy/rainy conditions

Japan's Plans (JMA/JAXA)

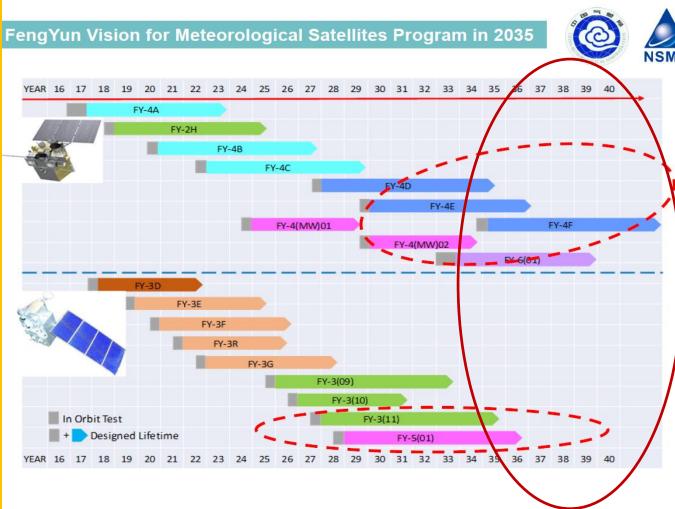
Japanese Earth Observation Satellites

Credit: JMA and JAXA presentations at CGMS 2019.

Hitoshi Tsuruma

China's CMA/NSMC Plans

FY3 Series (Leo): MWRI Microwave Imager is playing a critical role of gap filling microwave imaging data.


HIRAS Hyperspectral Atmospheric Sounder

MWTS (Micro-Wave Temperature Sounder)

MWHS (Micro-Wave Humidity Sounder)

FY4 Series (Geo): GIIRS
Hyperspectral IR sounder

LMI Lightning Mapper Imager

Courtesy of Peng Zhang (CMA)

EUMETSAT / ESA Plans

Metop-SG series

Will include both continuation and 'New' capabilities.

- ICI
- MWI
- MWS
- IASI-NG


MTG Series
IRS Hyperspectral
Atmospheric Sounder
- IRS

See Christophe's presentation on EUMETSAT/ESA for details!

February 3rd 2020

Four main program lines in ESA:

- 1) In the Earth Explorers, <u>EarthCARE</u> will be a major mission that will measure cloud and precip
- 2) Copernicus <u>CIMR</u> mission promises to be a 'game changer' for Microwave imaging
- 3) w EUMETSAT/Meteorology, MetOp-SG
- 4) ESA presently evaluating options for small sats ("SCOUT missions"), for Ph A study.

PEUMETSAT **CGMS**

Agenda

Introduction

Contributions. Credits. Background information.

Scope

What type of Space measurements and missions are we focusing on in this review?

Evolution of the Earth-Obs. Space Constellation

WMO/CGMS/CEOS coordination. Consortium of Space agencies and associated Partners. Focus on NWP needs.

Trends, Opportunities and Challenges

With a potential to impact the future evolution of the Global Observing Systems. In the 2030-2040 Timeframe.

Thoughts on Global Observing System of the Future

WIGOS 2040 Vision. Commercial Sector. Agile. Partnership. Optimizing the Constellation Architecture of the future.

Conclusions

Bright Future on all fronts. Double edge of NWP as driver for Future Observing Systems.

Major Factors Driving the Remote Sensing of the Future

International Drivers

- Affordability of space access and New International Spacefaring nations
- International Vision of Satellite Remote Sensing Capabilities: WMO WIGOS 2040 and CGMS Plans/Actions
- Emerging new opportunities (sensors, satellites) from international partners
- The Data Sharing Principle Conundrum
- International Partnerships for a Global Observing Systems (CGMS, CEOS, GEOSS)

National Drivers

- Increasing Public Demand for Environmental Intelligence
- Growing Pressure to Reduce Government Expenditures

Emergence of private Sector in Earth-Observing Satellite ut also in Environmental ediction

Data volume explosion, User needs (Big Data)

- Emergence of new areas of high interest (water, arctic,..)
- Spectrum Interference Challenges (in the Microwave)

Users Needs Evolution

- Evolution of the Weather Forecasting (NWP) & Environmental Monitoring Enterprise

Convergence of NowCasting and Remote Sensing: Satellite Data Fusion & Assimilation

- Coupled Earth System of the Future and increasing resolutions
- Users Needs evolution

Architecture Drivers

- Technological and Innovative advances of Sensors, Payload Hosting solutions
- Impact studies, OSSEs, FSOI, etc to perform value assessments

Growth of Citizen Science, IoT for Environmental Monitoring

Trend toward the Cloudbased Computing Solutions

- Need to justify Costs,
 Demonstrate ROI and Value of Obs. Systems
- Evolution toward Use-Driven Requirements (esp. <u>NWP</u>)

Evolution of GOS

These drivers are forcing agencies to think carefully about the best way to optimize the potential added value of next-generation observing systems. What NWP needs currently and what NWP will need in the future should be articulated

WMO WIGOS 2040: Trends & Vision

(Extracts Relevant to Cloud/Precip and NWP)

- Vision: (1) backbone with specified orbital configuration and measurement, (2) backbone with flexible orbits and new measurements, and (3) Operational pathfinders
- □ Progress in sensing technology will lead to higher signal sensitivity of sensors, leading to higher spatial, temporal, spectral and/or radiometric resolution.
- ☐ Hyperspectral will be used not only in IR but also in the UV, VIS, NIR and MW
- □ Radio-occultation technique will be generalized, using additional frequencies to maximize the sensitivity to atmospheric variables (incl. cloud/precip)
- ☐ Commercial sector.public/private partnerships, new business models
- □ Number of space-faring nations will lead to growing opportunities for a wider distribution of the space-based observation effort among WMO Members.
- □ Sub-orbital flights of balloons or unmanned aerial vehicles will also contribute.
- Smaller sats with shorter life cycles, more limited scope, more experimental payloads, and with faster, more flexible decision processes

Major Space Industry and technology Trends

(With Potential to Impact GOS)

Remote Sensors	Current Trends
Passive Microwave	- Higher spectral and spatial sampling
(Sounders, Imagers & Limb sounders)	- Microwave sensors on Geo
	- Mounting on Small satellites
Passive IR/VIS/UV	 Combining hyperspectral and high spatial resolution
(IR and Hyperspectral IR)	- Hyperspectral IR on Geo
	- Small sats
	 Visible and night time visible on Geo
Active Microwave	- Wider swaths
(scatterom., altimeter, radar, SAR).	- Multiple frequencies
	- Multiple polarizations
	- Finer spatial resolution
Occultation	- Higher density coverage
(Radio, solar, etc)	- Additional frequencies, polarimetric measurements
	- Higher sensitivities to cloud and precip
	- Commercial data

- Lower space access costs
- Trend toward cheaper, focused Observing systems (Smallsats, Cubesats, Microsatellites and Chipsats)
- Near-Space Global Observing System
- Trend toward Commercialization of Satellite Data & Privatization of Satellites
- New Global GOS international partners will allow better spatial coverage (denser orbital configuration)
- Convergence of meteorological and commercial needs for Earth global coverage (Google Loon project, Polar Communication & Weather PCW mission, etc) could lead to better coordination (similar to TAMDAR for airlines data sharing strategy)

A Peek into Future Microwave Sensors

Table 4.4. Emerging technology roll-up for microwave radiometers

Techno	ology Area	Measurement	State-of-the-Art	Notional Requirements
High fre Microwa Compositechnolo	nent	Clouds and precipitation, Atmospheric Composition, Humidity and Temperature	183-GHz 500K Tsys; 100mW LO; η=10% W-band detectors	900-GHz 500K Tsys; 100mW LO; η=40% >G-band detectors WG Filters >300 GHz
Integrat System		RZSM; Precipitation; Air-Sea-Flux; Altimetry	Separate instrument systems	Combined higher level of integration, aperture sharing, common FPAs
Large A	perture	RZSM; Precipitation; Land Surface	6m+ class deployable from rocket faring; 0.7m deployable from 1.5U f > 40-GHz for comm.	Denormance to ~609 GHz at 2m diameter deployable from 2.5U; 10m class to W-band;
calibrati	adiometers; eable	Temperature profile; Precipitation; Water vapor Ocean surface Clouds	Individual radiometer calibration assessments; cross calibration analysis required with other radiometers	Uniform calibration between fleet sensors; N>>10 radiometers all traced to SI-standard

New technology applicable to microwave radiometers designed for future Earth science measurements assessed with TRL~3 or higher, also includes techniques to extend polarimetric measurements to W-band and higher frequencies, improvements implementing digital receiver back-end electronics including realization of ultra-wideband radiometers with RFI mitigation technology.

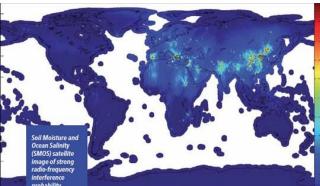
Future Sensors will have ...

- Higher Frequencies
- Better SNRs
- SI traceable calibration
- RFI mitigation integrated
- Polarimetric measurements expanded to higher freqs
- Ultra spectral sampling

Source: NASA/ESTO 2016 Microwave Technologies Review and Strategy

Technology Trends: 2030-2040 Timeframe

Positives	Challenges/Silver Linings
Payload Hosting (similar model to TAMDAR/AMDAR model?).	Spectrum interference (5G). Take advantage of 5G in Planetary Boundary Layer (PBL).
Noise Reduction and increase in quality (resolutions, # channels, etc)	Quality vs Quantity. Example of SmallSats (noise reduction).
Diversity of Sources (countries, commercial sector, etc.) and sensors	Commercial sector and the risk to free data policy.
SmallSat/Cubesats/etc	Importance of merging and cross calibrations of satellites /Emergence of SI-traceable calibration sensors to serve as anchors
Near-Space platforms and IoT (complementary with traditional space- and ground-based GOS)	
Polarization including for RO sensors: for convective cloud and precipitation	
Robustness of GOS	

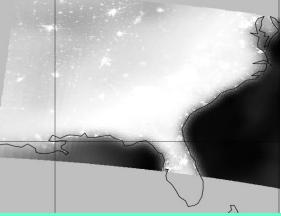


NOAN TOP COMME

RFI Challenge in the Microwave

Radio Frequency Interference (RFI) is spreading more and more upward in the microwave spectrum: If unchecked could lead to searching for alternative frequencies and/or loss of capability to measure certain geophysical parameters

1.4GHz (case of SMOS, SMAP) Actual Interference


Source: International Telecommunications Union

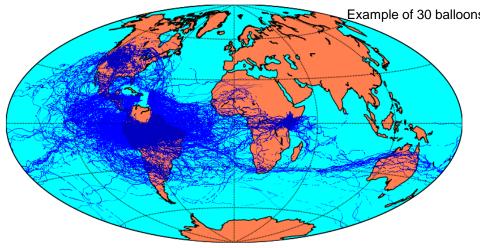
6-7 GHz and 10 GHz (case of AMSR)

Actual Interference

23.8 GHz (case of ATMS)

Simulated Interference-5G at -20dBW/200MHz

RFI could have signifiant impacts on channels currently used for cloud and precip and/or lower troposphere sensing in active conditions. Likely impacts: Shift to higher MW frequencies for cloud and precip sensing, Loss of sensitivity to large amounts.



Non-Governmental Sector Potential for Space Observations. Case of Near-Space Platforms

NOAN A MOSPHERIC ALL MISTRATION STORY

- Between now and 2040:
 - New Possibilities for env. data
 - New Players in the industry
 - New Challenges
 - Many Opportunities
 - Driven by Industry needs (not necessarily by Governments' needs)
 - loT for cloud/precip already a reality (telecom towers, traffic cameras, etc)
- Challenge: Use of Big data in NWP.
- NWP should benefit from and make use of these opportunities.
- NWP should evolve (agility, efficiency, adaptability, comprehensiveness,..) to face challenge of Big data

FB and Google in heated competition to provide internet connectivity in under-covered areas (typically also under-represented in terms of environmental measurement).

Advantages of Near-Space Platforms (in Stratosphere):

- Higher Spatial Resolution
- Cost-Effective
- Flexible payload hosting
- Flexible navigation (Stationary or not)
- Does not necessarily require space-grade components (so cheaper)
- X-Loon approached WMO: willingness to share data

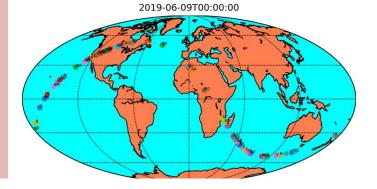
Disadvantages of Near-Space Platforms:

- Stability needs improvement
- Maturity of payload hosting not established
- Contamination extent to be studied
- Uncertainty about spatial coverage control

Potential for PayLoad-Hosting by Missions of Opportunity

(Example of Simulating Space-X Starink and Assessing Impact on NOAA systems)

- Example: Starlink is a satellite constellation planned by <u>SpaceX</u>, to implement a new space-based Internet communication system
- Goal: All the time, everywhere! (similar to NWP ideal)
- Group satellites pass over the Earth at the same orbit
- Phase 1: 1600 satellites at 550 kms altitude
- First 240 operational satellites were launched
- Significant potential for hosting Earth-Observations
- Can this offer the next TAMDAR-on-steroids? (where sensors were put on planes 4 NWP)



Mark Handley, University College London:

Perigee: 526.3 km _ Apogee: 530.8 km Inclination: 53.0 ° Period: 95.1 minutes

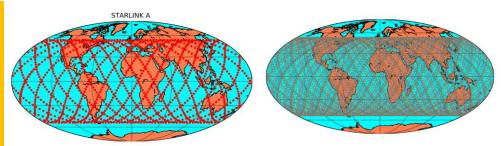

Figure 2. Phase 1 Catallite orbi

Figure 2. Dhace 2 Catallite arbi

Potential Advantages of Leveraging Missions of Opportunity for Earth Observations:

- Potential Significant Higher <u>Spatial</u> and <u>Temporal</u>
 Resolutions (7 mins in tropcs with 24 orbits/4 satellites)
- Potential Significant Cost-Effectiveness
- Unprecedented flexibility
- Effort is on ongoing to assess impact on NOAA systems using OSSE experiments

Very high spatial and temporal resolution. Opportunities for observational system

Agenda

Introduction

Contributions. Credits. Background information.

Scope

What type of Space measurements and missions are we focusing on in this review?

Evolution of the Earth-Obs. Space Constellation

WMO/CGMS/CEOS coordination. Consortium of Space agencies and associated Partners. Focus on NWP needs.

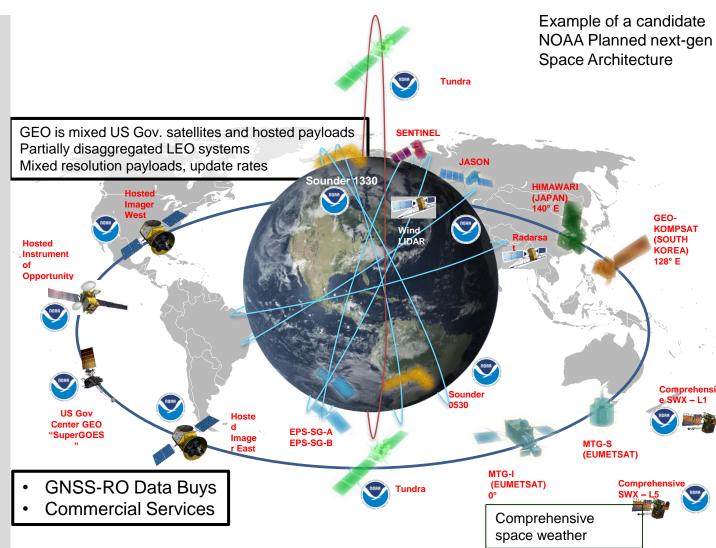
Trends, Opportunities and Challenges

With a potential to impact the future evolution of the Global Observing Systems. In the 2030-2040 Timeframe.

Thoughts on Global Observing System of the Future

WIGOS 2040 Vision. Commercial Sector. Agile. Partnership. Optimizing the Constellation Architecture of the future.

Conclusions


Bright Future on all fronts. Double edge of NWP as driver for Future Observing Systems.

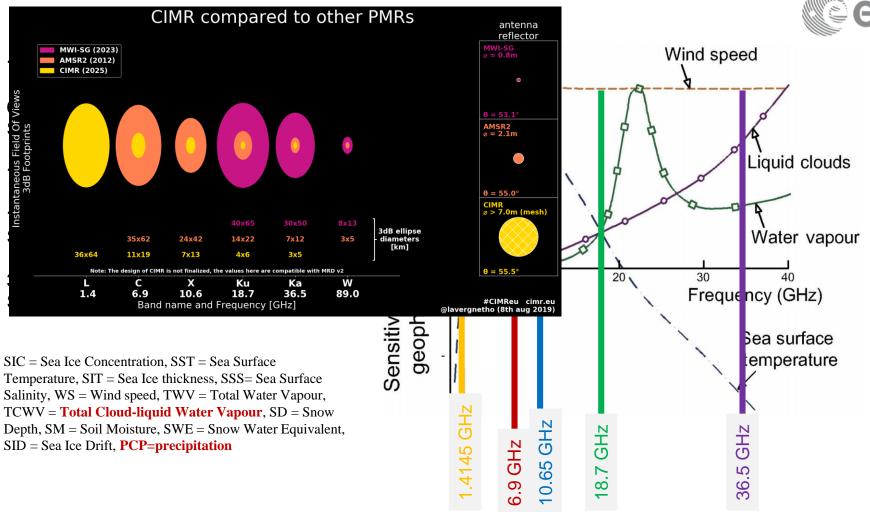
GOS in 2040 Timeframe: Likely a Hybrid and Disaggregated Architecture

- Examples of existing /planned small satellites (incl. from NASA):
 - **TEMPEST**
 - **TROPICS**
 - **MicroMAS**
 - **EON-MW**
 - **CYGNSS**
 - **CIRAS**
 - PAZ/ROHP
- Crucial role of partnerships for ride share, sensors, data buys
- Commercial Services for Radio Occultation and Other Sensors
- Strategic role for remote Sensing & NWP: How to maximize ROI of satellites with short lifespans. Requires:
 - Accelerating the end-to-end exploitation chain of satellite
 - Calibration including Monitoring
 - Validation
 - Algorithm development and
 - product generation Data assimilation and usage in NWP systems

Special Note on NASA's ACCP

- Overarching goal of ACCP is to jointly measure aerosol-cloud-precipitation properties to improve understanding of the processing of water and aerosols (Braun 2019)
- ☐ Program of record of ACCP : GPM mission, DPR, GCOM-W, EarthCare, GOSAT
- ☐ Part of the recommended directions in the most recent NASA Decadal Survey (2017)
- ☐ The study will conclude in 2021 with the recommendation of a few optimal observing systems based on a semi-quantitative Value Framework approach (Seidel 2019)
- ☐ Sensors considered (Braun 2019, personal comm.):
 - ☐ Precip and cloud Profiling Radar(s) —Active-,
 - ☐ Microwave radiometer(s) -Passive-
 - ☐ Atmospheric Lidar –Active-,
 - ☐ Spectrometer –Passive-
 - □ Polarimeter –Passive-
- ☐ Platforms considered: Cubesat, smallsat, medium size
- ☐ Constellation: Single platform, constellation or hybrid
- ☐ Part of the ACCP applications is 'Improved Numerical Weather Prediction'
- Launch is 2029 at the earliest.

Special Note on DoD's WSF-M MWI



- Only publicly available data can be shared:
 - □ WSF-M (Weather System Follow-on Microwave) is the next-generation operational environmental satellite system, Weather System Follow-on Microwave (WSF-M), for the Department of Defense (DoD).
 - WSF-M is designed to mitigate high priority DoD Space-Based Environmental Monitoring gaps: ocean surface <u>vector</u> winds, tropical cyclone intensity
 - Builds on GPM GMI technology
 - □ Program of Record: GPM, DMSP SSMIS, ATMS and WindSAT
 - ☐ Expected to be completed in 2023

Special Note on Copernicus CIMR

Gabarro et al, 2017

Agenda

Introduction

Contributions. Credits. Background information.

Scope

What type of Space measurements and missions are we focusing on in this review?

Evolution of the Earth-Obs. Space Constellation

WMO/CGMS/CEOS coordination. Consortium of Space agencies and associated Partners. Focus on NWP needs.

Trends, Opportunities and Challenges

With a potential to impact the future evolution of the Global Observing Systems. In the 2030-2040 Timeframe.

Thoughts on Global Observing System of the Future

WIGOS 2040 Vision. Commercial Sector. Agile. Partnership. Optimizing the Constellation Architecture of the future.

Conclusions

Bright Future on all fronts. Double edge of NWP as driver for Future Observing Systems.

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Attempt at Predicting the Evolution of the Space-Based Earth Observing Sensors

(with Focus on cloud/precip and NWP)

- Long term Plans of Major Space agencies extend to at least 2030s and some to 2040s. Continuity of space observations of NWP-relevant cloud and precip as well as sounding in cloudy and precip conditions, seems secure.
- At the same time, there is an increase in sources, numbers, diversity and quality (noise, resolution, temporal refresh, spectral coverage and resolution, etc) of Satellite Observations including for cloud/precip
- Emergence of new capabilities for cloud/precip: Higher spatial resolution, Better SNR, Sub-millimeter sensing, Hyperspectral Microwave sensors (hydrometror profiling, microphysics sensing, etc), Polarimetric RO, etc
- The future will likely lead a hybrid constellation with SI-traceable anchor observing systems along with a large number of other smaller satellites
- Perhaps traditional satellites will be complemented by near-space constellation of sensors-equipped balloons and by data from Commercial/Public partnerships (payload hosting, data buys, etc)
- Challenges exist (Cost sustainability, Spectrum loss, RFI, data sharing, etc), some presenting some silver lining opportunities (for NWP)

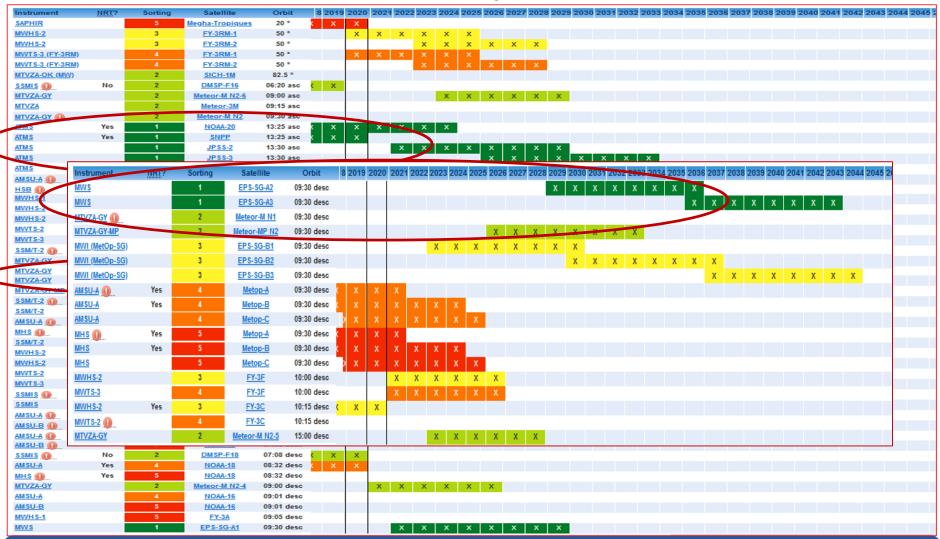
Summary

Our perspective for the 2030-2040 Timeframe:

- We are at the dawn of a golden era of satellite-based earth observation sensors, including for the observation of cloud and precip and/or a more accurate measurement of other NWP-relevant variables, in cloudy and precipitating conditions.
- Efforts are on going (or will be initiated soon) to think about designing the Space constellation of the future: Post-JPSS, Post-GOES-R, post EPS-SG, post-FY3/4, etc
- NWP (gradually becoming the ESP), because it is such a foundational application, is increasingly used as a driver for designing and optimizing the next-generation space architecture. This represents a double-edge sword: Potential for ignoring the needs of the future if decisions are based on OSE, FSOI, OSSE, etc using current NWP capabilities
- NWP community has to fine-tune its messaging to space agencies about its current and future needs. Ideally work closely on this aspect. Point in case: Cloud and Precip needs.
- Cloud/Precip workshop should include not only use of cloud/precip in current NWP, but also look into future needs (e.g. need for microphysical properties, need for hydrometeor profiling, added signal to distinguish cloud/precip from other NWP-relevant signals,..) to convey to Agencies
- Possible mechanism: closer work relationship between this group and IPWG, ICWG,
 Working groups for CGMS (successful example of NWP community involvement in ITWG)

BACKUP

IR T/Q Sounding from LEO


IR T/Q Sounding from GEO

Instrument	NRT?	Sorting	Satellite	Orbit	14.20	15 201	6 2017	7 2019	2019	2020	2021	2022	2023	2024 2	2025.2	026.2	027 2	028 2	029 2	030.2	031 20	32 203	3 203/	1 2035	2036	2037	2038 20	39 204	0 2041 2
SOUNDER	MIXI:	3	GOES-9	135°W	14 20	10 201	0 2011	2010	2015	2020	2021	2022	2020	2024	.020 2	.020 2	.021 2	020 2	020 2	050 2	05120	JZ 203	5 200	+ 2000	2000	2001	2000 20	55 204	0 2041 2
SOUNDER		3	GOES-10	135°W																									
SOUNDER		3	GOES-11	135°W																									
VAS		3	GOES-4	135°W																									
VAS		3	GOES-6	135°W																									
SOUNDER	Yes	3	GOES-15	128°W	()	Х	Х	Х	Х	Х																			
SOUNDER	Yes	3	GOES-14	105°W	()			х	Х	Х																			
SOUNDER		3	GOES-8	75°W																									
SOUNDER		3	GOES-12	75°W																									
VAS		3	GOES-5	75°W																									
VAS		3	GOES-7	75°W																									
SOUNDER (I)	No	3	GOES-13	60°W	()																								
SOUNDER		3	GOES-10 (S-Ameri	60°W																									
SOUNDER		3	GOES-12 (S-Ameri	60°W																									
IRFS-GS		1	Electro-M N1	14.5 W											Х	Х	Х	Х	X I	X	Х	X	Х	Х					
IRS		1	MTG-S1	0°									Х	Х	X	X	X X	X X	X I	X I	Х								
ID C		1	MTG-S2	9-																	х х	Х	Х	Х	Х	Х	Х		
SOUTHER (INSAL)		3	IN SAI-3DR	74°E			ХХ	Х	Х	Х	Х	Х	Х	Х															
SOUNDER (INSAT)		3	IN SAT-3D S	74°E								Х	Х	Х	Х	Х	Х	Х	Х										
IRFS-GS		1	Electro-M N2	76°E												Х	Х	Х	X I	X	х х	X	Х	Х	X				
SOUNDED (IN SAT)	Yes	3	IN SAT-3D	82°E	()	X	Х	Х	Х	Х	Х																		
GIIRS		1	FY-4C	86.5°E							Х	Х	Х	Х	Х	X	Х	Х											
GIIRS		1	FY-4E	86.5°E													X X	X X	X I	X :	х х	X	Х						
GIIRS		1	FY-4G	86.5°E	1																	X	х	X	X	Х	Х	X	
GIIRS	Yes	1	FY-4A	105°E)		X	X	X	Х	Х																		
GIIRS		1	FY-4B	105°E						Х	X	Х	X X	X X	X X	X	Х												
GIIRS		1	FY-4D	105°E									X	X	X	X X	Х	Х		X									
GIIRS		1	FY-4F	105°E																X	х х	X	Х	X	X	Х			
SOUNDER		3	GOES-9 (GMS bac	155°E														_											
IRFS-GS		1	Electro-M N3	165.8°E															X I	X	х х	X	X	X	X	Х	X X		

MW T/Q Sounding from LEO

Precipitation (liquid or solid)

Instrument	NRT?	Relevance	Satellite	Orbit)2	2003	200	200	200	2007	7 2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	202	1 202	202	3 202	4 202	2026	2027	2028	2029 203
<u>PR (()</u>		3 - high	TRMM	35°	(χ	Х	Х	Х	χ	Х	χ	Х	Х	Χ	χ	χ	X														
Rainradar		1 - primary	FY-3RM-1	50°																			X	X	X	X	X	X				
Rainradar		1 - primary	FY-3RM-2	50°																						X	X	X	X	X	X	
RainCube		4 - fair	ISS RainCube	51.6°																	χ	Х	χ	χ								
DPR	No	1 - primary	GPM Core Observ	65°													X	X	X	X	X	X	X									
CPR (CloudSat) 0		5 - marginal	<u>Cloud Sat</u>	13:30 asc					χ	χ	χ	χ	Х	Х	Х	Х	χ	χ	χ	χ	χ	χ	χ									
CPR (Earth-CARE)		5 - marginal	EarthCARE	14:00 desc																				χ	χ	Х	Х					

Cloud Top T

Instrument	NRT?	Relevance	Sate	llite Orbit	7 20	018 2019 2020	2021 2022	2023 2024 2025 20	26 2027	2028 2029 202	80 2031 2032 2022	2034 2035 2	036 2037 2029	2039	040 2041 2042 2043	2044 2045
ABI	Yes	2 - very high	GOE			X X X		X X X X			00 2031 2032 2033	2034 2033 2	030 2037 2030	2033	.040 2041 2042 2043	2040
BI	103	2 - very high	GOE					x x x x			Y					
MAGER (GOES 8-11		2 - very high	GOE			^	K K	A A A A	, A	A A A	Α					
MAGER (GOES 8-11		2 - very high		Instrument	NRT?	Relevance	Satell	ite Orbit	7 201	8 2019 2020 2	021 2022 2023 202	4 2025 2026	2027 2028 202	29 203	2031 2032 2033 203	34 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
IAGER (GOES 8-11		2 - very high		MVIRI	naman*	3 - high	Meteos	at-5 0°								
OUNDER		2 - very high		MVIRI		3 - high	Meteos									
DUNDER		2 - very high		MVIRI		3 - high	Meteos	at-7 0°								
OUNDER		2 - very high		SEVIRI (I)	Yes	2 - very high	Meteo									
AS		2 - very high	GO			2 - very high	Meteo	Instrument	NRT?	Relevance	Satellite	Orbit	7 2018 2019	2020	2021 2022 2023 202	24 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 20
AS		2 - very high		SEVIRI (I)	Yes	2 - very high	Meteos	AGRI		2 - very high	FY-4F	105°E				x x x x x x x x
ISSR		5 - marginal	GO	SEVIRI (I)		2 - very high	Meteosat-8	S-VISSR (FY-2C/D/E		2 - very high	FY-2C	105°E				
ISSR		5 - marginal	<u>G0</u>	MVIRI		3 - high	Meteosat-7	GHI		3 - high	FY-4B	105°E		Х	x x x x	X X X
ISSR		5 - marginal	SN	MVIRI		3 - high	Meteosat-	S-VISSR (FY-2A/B) S-VISSR (FY-2A/B)		3 - high 3 - high	FY-2A FY-2B	105°E 105°E				
MAGER (GOES 12-1	Yes	2 - very high	GOE	MVIRI		3 - high	Meteosat-6		Vos	_	FY-2E		, , ,	v		
OUNDER	Yes	2 - very high	GOE	IMAGER (IN SAT)		2 - very high	IN SAT-	S-VISSR (FY-2F/G/H AMI	Yes	2 - very high	GEO-KOMPSAT-2A	112°E 128.2°E	(X X	, x	v v v v	
IAGER (GOES 12-1	Yes	2 - very high	GOE	IMAGER (IN SAT)		2 - very high	IN SAT-	nm1 Mi	Yes	2 - very high	COMS	128.2°E		X	v v x x	x x x x x
DUNDER	Yes	2 - very high	GOE			2 - very high	IN SAT-	IAMI A	162		Himawari-6 (MTSA	128.2°E 140°E	C X X	Х		
HRR (ATS)		5 - marginal	AT	SOUNDER (IN SAT)		2 - very high	IN SAT-	VISSR (Himawari-5)			Himawari-5 (GMS-	140°E				
<u>31</u>		2 - very high		VHRR (INSAT)		3 - high	INSAT			5 - marginal	Himawari-1 (GMS-	140°E				
<u>BI</u>		2 - very high	GOI	VHRR (IN SAT)		3 - high	INSAT	VISSR (Himawari 1-		5 - marginal	Himawari-2 (GMS-	140°E				
MAGER (GOES 12-1		2 - very high	GOE	VHRR (INSAT)		3 - high		VISSR (Himawari 1-			Himawari-3 (GMS-	140°E				
MAGER (GOES 8-11		2 - very high	<u>GO</u>	VHRR (INSAT)		3 - high		VISSR (Himawari 1-		5 - marginal	Himawari-4 (GMS-	140°E				
OUNDER		2 - very high	<u>GO</u>	VHRR (IN SAT)		3 - high			Yes	2 - very high		140.7°E		v	v v v v	V V V V V
OUNDER		2 - very high	GOE	IRFS-GS	.,	1 - primary	Electro Electro		163	2 - very high		140.7°E	C X X	1	· · · · ·	
<u>IS</u>		2 - very high	<u>GO</u>	MSU-GS (I)	Yes	2 - very high		IMAGER (MTSAT-2)	No		Himawari-7 (MTSA	145°E		^	^ ^ ^ ^	^ ^ ^ ^ ^ ^ ^ ^ ^ ^
<u>is</u>		2 - very high	<u>GO</u>	MSU-GS		2 - very high		IMAGER (GOES 8-11	140	2 - very high		155°E				
VIRI		3 - high	Meteosat	MSU-GSM STR (Electro)		2 - very high 5 - marginal		SOUNDER			GOES-9 (GMS bac	155°E				
ISSR		5 - marginal	<u>GO</u>	S-VISSR (FY-2F/G/H	Yes	2 - very high		IRFS-GS		1 - primary	Electro-M N3	165.8°E				x x x x x x x x x x
ISSR		5 - marginal	<u>SN</u>	IMAGER (INSAT)	Yes	2 - very high		MSU-GS		2 - very high	Electro-L N3	165.8°E		Х	v v v v	X X X X X
MAGER (GOES 12-1 MAGER (GOES 12-1	Yes	2 - very high	GOES-12	SOUNDER (INSAT)	Yes	2 - very high		MSU-GSM		2 - very high		165.8°E		1 ^	X	X X X X X X X X X X X X X X X X X X X
MAGER (GOES 8-11		2 - very high	GOES-12	MX-LWIR		2 - very high		MSU-GS		2 - very high		166°E			x x x x	x x x x x x x x
	No	2 - very high 2 - very high	GOE	MX-LWIR		2 - very high		VIRS		4 - fair	TRMM	35 °			X X X X	
OUNDER (()	IVO	2 - very high		VHRR (INSAT)		3 - high		MERSI-2		2 - very high	FY-3RM-1	50 °		×	x x x x	Y .
OUNDER		2 - very high		GIIRS		1 - primary		MERSI-2		2 - very high	FY-3RM-2	50 °		- 1		x x x x
IVIRI		3 - high	Meteosa	GIIRS		1 - primary		ECOSTRESS (I)		2 - very high		51.6 °	х х	×	x x x	
ISU-GS		2 - very high	Electr	GIIRS		1 - primary		MSU-GS/A		2 - very high	Arctica-M N1	63.4 °	Λ Λ	×	x x x x	Y Y
RFS-GS		1 - primary	Electr	AGRI		2 - very high		MSU-GS/A		2 - very high		63.4 °		- 1	x x	
SU-GSM		2 - very high	Electr	AGRI		2 - very high		MSU-GS/A		2 - very high		63.4 °				$\begin{pmatrix} \hat{x} & \hat{x} & \hat{x} & \hat{x} \end{pmatrix}$
RS		1 - primary	MT	<u>AGRI</u>		2 - very high		MSU-GS/A		2 - very high		63.4 °			^	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
RS		1 - primary	MT	S-VISSR (FY-2C/D/E		2 - very high		MSU-GS/A		2 - very high	Arctica-M N5	63.4 °				x x x x x x
CI		2 - very high	MT	S-VISSR (FY-2C/D/E	Yes	2 - very high	FY-2	SI-GDR		3 - high	Meteor-P2	81.2 °				
<u>CI</u>		2 - very high	MT	VHRR (IN SAT)		3 - high	IN SAT	SM (Meteor-2)		4 - fair	Meteor-2-3	81.2 °				
<u>CI</u>		2 - very high	MT	VHRR (IN SAT)		3 - high	IIVONI	SM (Meteor-2)		4 - fair	Meteor-2-4	81.2 °				
CI		2 - very high	MT	VHRR (INSAT)		3 - high	IN SAT	SM (Meteor-2)		4 - fair	Meteor-2-5	81.2 °				
EVIRI		2 - very high	Metec	VHRR (IN SAT)		3 - high	INSAT	SM (Meteor-2)		4 - fair	Meteor-2-6	81.2°				
VIRI		3 - high	Mete	S-VISSR (FY-2F/G/H		2 - very high	FY-2	SM (Meteor-2)		4 - fair	Meteor-2-10	81.2°				
VIRI		3 - high	Mete	GIIRS	Yes	1 - primary	FY-4	IR (Meteor-1)		5 - marginal	Meteor-1-1	81.2°				
VIRI		3 - high	Mete	GIIRS		1 - primary	FY-4	IR (Meteor-1)		5 - marginal	Meteor-1-2	81.2°				
VIRI		3 - high	Mete	GIIRS		1 - primary				5 - marginal	Meteor-1-3	81.2°				
				GIIRS	V	1 - primary	FY-4	IR (Meteor-1)		5 - marginal	Meteor-1-4	81.2°				
				AGRI	fes	2 - very high		IR (Meteor-1)		5 - marginal	Meteor-1-5	81.2°				
				AGRI AGRI		2 - very high		IR (Meteor-1) IR (Meteor-1)		5 - marginal 5 - marginal	Meteor-1-6 Meteor-1-7	81.2 ° 81.2 °				
				<u>NORI</u>		2 - very high	<u>FT-4</u>	IR (Meteor-1) IR (Meteor-1)		5 - marginal 5 - marginal	Meteor-1-7 Meteor-1-8	81.2°				
								IR (Meteor-1)		5 - marginal	Meteor-1-9	81.2 °				A
							_	IR (Meteor-1)		5 - marginal	Meteor-1-10	81.2°				And so on
Februar	v 3r	d 202	<u> </u>					IR (Meteor-1)		5 - marginal	Meteor-1-11	81.2 °				,
T GUI UAI	y J	, 202	0					IR (Meteor-1)		5 - marginal	Meteor-1-12	81.2°				

Russian Federation Earth-Observations Constellation Plans

Meteor-M N 2 Basic Instruments Specifications

Instrument	Application	Spectral band	Swath- width (km)	Resolution (km)	
MSU-MR Low-resolution multi-channel scanning radiometer	Global and regional cloud cover mapping, ice and snow cover observation, forest fire monitoring	0,5 – 12,5μm (6 channels)	2900	1 x 1	ological Satellite Systems ce Program for 2016-2025)
KMSS Visible spectrum scanning imager	Earth surface monitoring for various applications (floods, soil and vegetation cover, ice cover)	0,4-0,9 μm (3+3 channels)	450/900	0,05/0,1	015 2016 2017 2018 2019 2020 2021 2022 2023 2024 202
MTVZA-GY Imager-sounder (module for temperature and humidity sounding of the atmosphere)	Atmospheric temperature and humidity profiles, SST, sea level wind, etc.	10,6-183,3 GHz (26 channels)	1500	16 – 90	1 January 20, 2011
KFS-2 Advanced IR sounder (infrared Fourier- spectrometer)	Atmospheric temperature and humidity profiles	5-15 μm	2000	35	ELECTRO-L N 3 (TBD) ELECTRO-L N 4 (TBD)
"Severjanin-M"* X-band synthetic aperture radar	All-weather Ice coverage monitoring	9500-9700 MHz	600	0,5/1	ELECTRO-L N 5 (TBD)
GGAK-M Heliogeophysical measurements suite	Heliogeophysical data				ARCTICA-M N 1 ARCTICA-M N 2
BRK SSPD Data collection system (DCS)	Data retransmission from DCPs				ARCTICA-M N 3 ARCTICA-M N 4 ARCTICA-M N 5
ordination Group for eteorological Satellites	LEO		ROOCHOC	CGMS	
					METEOR-M N 2 - 2
					METEOR-M N 2 -3 METEOR-M N 2 -4
		tion Group f			© ÇGA

Credit: Roscosmos/Roshydromet presentation at CGMS 2019.

India Plans (IMD and ISRO)

Data Rate/Bandwidth

		INSAT-3I) Sounder	Channels	Characteristics	
Detector	Ch. No.	λ _c (μ m)	ν _c (cm ⁻¹)	NEΔT @300K	Principal absorbing gas	Purpose
	1	14.67	682	0.17	CO ₂	Stratosphere temperature
	2	14.32	699	0.16	CO ₂	Tropopause temperature
	3	14.04	712	0.15	CO ₂	Upper-level temperature
Long wave	4	13.64	733	0.12	CO ₂	Mid-level temperature
	5	13.32	751	0.12	CO ₂	Low-level temperature

FUTURE GEO SATELLITES – INSAT-3DS

Channel

INSAT-3DS: India will launch this exclusive third meteorological satellite of this series in 2022.

Resolution

		5		13.3	2	751	0.12		CO	2	Lo	w-level ter	nperatur	e					Ir	nager		visible (0	.52-0.77 μm)	1x1 Km	
EX	(AM	PLE -	- Ov	ervi	ew -	Pla	nnin	g of	ISRO) sat	ellit	e sys	stem	sfo	r Oc	eans	and	Atn	nosp	her	е		.70 μm)	1x1 Km	3.92725 Mbps
								_				•							•				0 μm)	4x4 Km	
EAR	09	10	11	12	13	1.1	10	16	17	18	19	20	21	22	22	24	25	26	27	28	29		1 μm)	8x8 Km	
	09	10	11	12	15	14	15	10	17	10	19	20	21	22	23	24	25	26	21	20	29		1.3 μm)	4x4 Km	
					OCE	ANSA	T-2																2.5 μm)	4x4Km	
				Мє	egha-	Tropic	ques																nel (14.71-12.02 μm)		
								INSA	T-3D														nnel (11.03-6.51 μm)	10x10 Km	40.00 Kbps
							C A	DAI	Λ I±:1/a														nel (4.57-3.74 μm)		
							5/4	RAL-	AITIK		7												um)		
										Scat	sat-1												'5MHz		
										-	IN.SAT	-3DR)5MHz		
													GISA	Т											
													DIC	- AT 1											
	Prese	ent ai	nd Fı	uture	Pro	gram	nmes						KIS	SAT-1											

Oceansat-3

Oceansat-3A NISAR

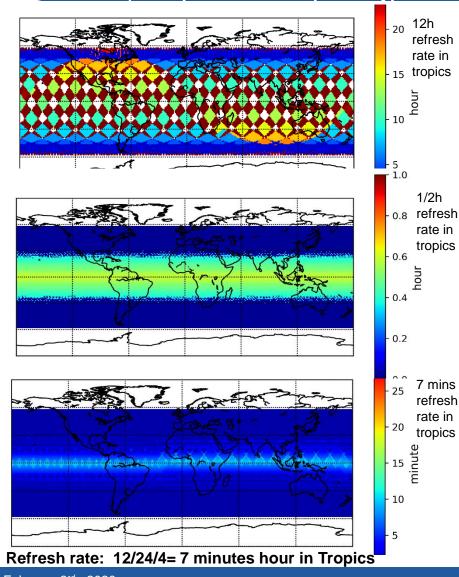
> INSAT-3DS TRISHNA

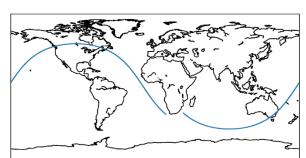
Credit: IMD/ISRO presentation at CGMS 2019.

Coordination Group for Meteorological Satellites

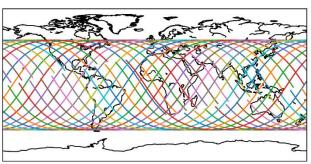
KMA Plans

- KMA will conduct feasibility study to decide the priority of GK3 payloads such as imager, sounder, and lightening mapper if possible. GK3 is planning to be launched around early 2028.
- As of the LEO, last year the KMA LEO program (MW sounder) was not approved by the decision of special feasibility test. And thus KMA will modify the LEO program including both IRS and MWS, and investigate the effect on KMA's NWP next year. The goal of KMA is to kick-off the LEO program in 2023 to be launched in around 2029.
- More concrete plan will be decided in late next year as of GK3, but LEO program still need more time for final decision.

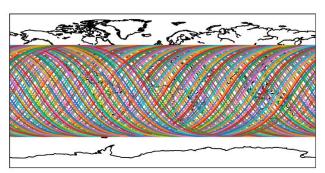

Credit: Personal Communication : Dohyeong Kim (Korean National Meteorological Satellite center)



Example of Temporal Resolution



(Example based on SpaceX-type orbital configuration simulation of 1,24, :



24 Orbits1 Satellite

24 Orbits4 Satellites

NASA Plans /Commercialization

Successful Recent Launches and Ops of Additional 6U CubeSats

Radar in a CubeSat (RainCube)

Jet Propulsion Laboratory

Precipitation Radar – Validate a new architecture for **Ka-band radars on CubeSat platform** and an ultra-compact deployable Kaband antenna

Launched May 21, 2018 Deployed from ISS July 13, 2018 First Light August 27, 2018

Temporal Experiment for Storms and Tropical Systems Demonstration (TEMPEST-D)

Colorado State University

5 Frequency mm-Wave Radiometer – Technology demonstrator **measuring the transition of clouds to precipitation**

Launched May 21, 2018
Deployed from ISS July 13, 2018
First Light September 5, 2018

Coordination Group for Meteorological Satellites

Credit: NASA presentation at CGMS 2019. J. Kaye