Comparing airborne sub-millimetre observations of ice

== Met Office clouds with model simulations

Stuart Fox

Background Example flight — C161

« The next generation of European polar-orbiting weather satellites (EPS-SG), due to be launched in the

Figure 3 shows the NWP model cloud field along the flight track during C161. Figure 4 compares the

2020s, will carry the Ice Cloud Imager (ICI) which has 13 channels measuring frequencies between observed brightness temperatures to the ARTS simulations using different ice particle habits (for selected
183 and 664GHz that are sensitive to scattering by cloud ice. frequencies).
* As well as enabling retrievals of bulk ice mass, ICI observations could be assimilated directly into - Simulated brightness temperatures are strongly sensitive to the ice particle habit but exact behaviour is
Numerical Weather Prediction (NWP) models using the "all-sky" approach. This requires a sufficiently frequency dependent
accurate representation of cloud ice in NWP and radiative transfer models. - Higher frequencies are sensitive to upper cloud layers that are not seen at 183GHz and below (e.g.
« Case studies of cloudy scenes from several campaigns with the UK FAAM BAe-146 aircraft are used to between 200 and 300km along-track)
evaluate the ability of NWP and radiative transfer models to simulate realistic brightness temperatures  General cloud features reproduced but exact details different (e.g. large spike in observations at 664 and
between 89 and 874GHz. 874 GHz around 400km is not in model).
* Modelled brightness temperatures at the ICI incidence angle are compared to observations from the T o 89GHz 157GHz . 183+7GHz . 243GHz
ISMAR (Fox et al. 2017) and MARSS (McGrath&Hewison, 2001) radiometers on the FAAM aircraft. e
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path from the NWP model.

correspond to polarisations Comparisons of brightness temperature histograms (figure 6) are more robust to this effect

«  Geer & Baordo (2014) propose the metric h = (Zbins log ZS;ZZZ;Q; ) /#bins observed to compare

NWP m0d6| CO nfigurati()n histograms, where smaller values indicate a better fit. This is shown in Figure 5 (bottom panel).

. Atmospheric fields from Met Office Unified Model (UM) [UKV domain, RA2-M configuration]  Results are generally consistent for both RMSE and h. No single habit gives the best results across all

. . frequencies.
* Horizontal resolution ~1.5km q 89GHz 157GHz 183+7GHz

: . : : « “LargeColumnAggregate” habit gives good performance

« 90 vertical levels on hybrid height grid between surface and 40km acro%s fre uenc?gs gut slightl Sndergredic?s
« 1-minute timestep (with output every 15 minutes) . ' Jnty P |
. . . : occurrence of low brightness temperatures
* Initialised from closest available operational UKV analysis ;

* Fields used from 15-minute timestep closest to midpoint of aircraft run
« Maximum time difference between model fields and observation ~32 minutes — ENNE U U LU 1 (.
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* Pressure, temperature, specific humidity, ice water content, graupel water content, cloud liquid ' ' ' [
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water content, rain water content, surface temperature, surface windspeed
« 3D fields are interpolated vertically to 90 constant pressure levels for compatibility with ARTS radiative
transfer model
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Radiative Transfer model configuration T | | S B e
. Radiative transfer simulations using the Atmospheric Radiative Transfer Simulator (ARTS) 2.3.1277. AR E'EE'E R ETE |
* Aim to achieve consistent cloud microphysics in the radiative transfer and NWP models. o |!| “J |! |! |!| |! |! |! “J |! |!| |!| |!|
+ 3D Monte Carlo calculation using 3D NWP fields. Vs a0 a0 s a0 e a0 s a0 s w0 27
* Reference calculation (slow). Not suitable for data assimilation, which requires fast solvers. -0 5 s g8 8 88 B8 Figure 6: Histograms of observed and simulated brightness
° Hydrometeors assumed to be evemy distributed within each grid ceII, i.e. cloud fraction = 1. Figure 5 RMS error (top)_and histogram fit parameter (bottom) for different temperat_ures for all flights. Dashed Ii_nes re_pre_)sent H-polarised
. Particle single scattering properties from ARTS scattering database (Eriksson et al., 2018). Random ‘ce particle habits for all flights observations. Colours represent habits as in figure 5
orientation for all particles. Particle size distributions (PSDs) follow NWP model microphysics scheme: )
- |ce: Different particle habits (Figure 2), selected to span a wide range of bulk optical properties COnCIUSIOnS and fUture WOrk
when integrated over the PSD. PSD parametrized according to ice water content and in-cloud - Using atmospheric fields from the Met Office UKV NWP model to drive ARTS radiative transfer simulations
temperature following Field et al. (2007), tropical distribution-. | for cloudy scenes it is possible to generate realistic brightness temperatures when compared to
* Cloud liquid water: "LiquidSphere” scattering properties (Mie-Lorenz calculations). PSD follows MARSS/ISMAR observations between 89 and 874 GHz.
gamma distribution with parameters from Geeré&Baordo (2014)° » Simulated brightness temperatures are strongly sensitive to the assumed cloud ice particle scattering
* Rain: “LiguidSphere” scattering properties. PSD follows exponential distribution with parameters properties.
from Abel&Boutle (2012). | | o » Asingle set of ice particles (“LargeColumnAggregate” habit) provides reasonable performance across the
« Graupel: “GemGraupel” scattering propertiess. PSD follows gamma distribution with same whole microwave frequency range for the cases studied.
parameters as NWP model. » Future work will include:
* Gas absorption properties: | » Considering the impact of polarisation due to oriented ice particles
* H,0: line parameters from AER v3.6 database, MT-CKD v3.2 continuum » Developing particle habit models which follow the NWP model mass-dimension relationship to give better
* Op: MPM33 absorption model (Liebe et al. 1393) with updates from Tretyakov et al. (2005) consistency between the PSDs used in the NWP and radiative transfer models.
> N,: Continuum parametrization from Rosenkranz (1993) | o » Evaluating the consistency of simulations with cloud radar and lidar to identify possible deficiencies in the
* Pencil-beam view (1.e. no antenna pattern) following observation line-of-sight (~52° incidence). cloud representation within the NWP model.
* Two frequencies simulated per channel (at the centre of each of the dual sidebands), averaged. - Application to ICI will require an understanding of the implications of the large satellite footprint (e.g. sub-

* Surface emissivity: TESSEM2 (Prigent et al., 2016) for sea, fixed (0.9) for land footprint heterogeneity), as well as ensuring sufficiently accurate polarised calculations from fast radiative

transfer models such as RTTOV-SCATT
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