

Uncertainty characterization of sub-mm and MW in all-sky radiative transfer

Vasileios Barlakas, Patrick Eriksson, Robin Ekelund

Why ice clouds?

- Cover ~30% of the Earth
- o A significant role in the energy budget
- Large uncertainties in numerical weather prediction (NWP) and climate models

Why ice clouds?

- \circ Cover ~30% of the Earth
- A significant role in the energy budget

 Large uncertainties in numerical weather prediction (NWP) and climate models

Why microwave (MW) and sub-mm?

- The assimilation of MW observations comprises ~40% of the observation impact.
- Sensitive to both large and small ice hydrometeors.

Why ice clouds?

- Cover ~30% of the Earth
- A significant role in the energy budget
- Large uncertainties in numerical weather prediction (NWP) and climate models

• Why microwave (MW) and sub-mm?

- The assimilation of MW observations comprises ~40% of the observation impact.
- Sensitive to both large and small ice hydrometeors.

Ice Cloud Imager (ICI)

- 183.31–664 GHz (15 km footprint)
- Improved ice cloud representation
- o Extend the scope of MW assimilations

In stand-alone retrievals and data assimilation (DA), several assumptions are still employed:

- o particle size distributions (PSDs) and particle models (PMs) are poorly considered,
- o three-dimensional (3D) radiative transfer is ignored.

- ① Can combined active and passive measurements be used to constrain ice PMs?
- 2 Are retrievals at mm/sub-mm wavelengths affected by 3D effects?

Using passive and active microwave observations to constrain ice particle model

Can we constrain ice particle models?

- CloudSat orbits: 59 (July 2015) over Tropics
- o PSD: (a) Field et al., 2007 (**F07**)
 - (b) McFarquhar & Heymsfield, 1997 (MH97)
- o GMI-wise simulations vs observations
- o ICI-wise simulations

o 34 freq.: 1-886.4 GHz

- o 34 particle models (PM)
- o 35-45 sizes per PM
- o Method: DDA

Eriksson et al., 2018

● Brightness temperature distributions – 190.31 GHz

● Brightness temperature distributions – 190.31 GHz

● Brightness temperature distributions – 190.31 GHz

Brightness temperature distributions – 668.20 GHz

8-column aggregate

ICON cloud ice - ICON snow

Compared to 190.31 GHz:

Larger spread at intermediate T_b

DARDAR spheroid the most significant outlier

Summary

- \circ Overall, $T_{\rm B}$ -distributions agree well with GMI observations.
- \circ Most particle models perform well compared to GMI at intermediate $T_{\rm B}$ -values.
- o Of tested PSDs, the one by McFarquhar and Heymsfield (1997) leads to smaller discrepancies.
- O At sub-mm wavelengths, a significantly higher sensitivity to the assumed particle models is found.

Outlook

Apply methodology to ICI measurements when available.

Three Dimensional Radiative Effects in Passive mm/sub-mm All-sky Observations

β_1	$oldsymbol{eta_2}$	β_3
β_4	$oldsymbol{eta}_5$	$oldsymbol{eta}_6$
β_7	$oldsymbol{eta_8}$	β_9

2D slice of 3D

β_1	$oldsymbol{eta_2}$	β_3
β_4	$oldsymbol{eta}_5$	$oldsymbol{eta}_6$
β_7	$oldsymbol{eta_8}$	$oldsymbol{eta}_9$

2D slice of 3D

β_1	$oldsymbol{eta_2}$	β_3
β_4	$oldsymbol{eta}_5$	$oldsymbol{eta}_6$
β_7	$oldsymbol{eta_8}$	$oldsymbol{eta}_9$

2D slice of 3D

β_1	$oldsymbol{eta_2}$	β_3
β_4	$oldsymbol{eta}_5$	$oldsymbol{eta}_6$
β_7	$oldsymbol{eta_8}$	β_9

2D slice of 3D

β_1	$oldsymbol{eta_2}$	β_3
β_4	$oldsymbol{eta}_5$	$oldsymbol{eta}_6$
$oldsymbol{eta_7}$	$oldsymbol{eta_8}$	$oldsymbol{eta}_9$

2D slice of 3D

- 1) A **3D** mode (ARTS-MC)
- 2) Independent Beam Approx. (**IBA**) mode (DISORT)

β_7	ß	8	β_{9}
2D	slice	of 3	3D

 β_5

IBA

- 1) A **3D** mode (ARTS-MC)
- 2) Independent Beam Approx. (**IBA**) mode (DISORT)

β_1	$oldsymbol{eta_2}$	β_3
β_4	$oldsymbol{eta}_5$	$oldsymbol{eta}_6$
β_7	$oldsymbol{eta_8}$	$oldsymbol{eta_9}$

2D slice of 3D

IBA

- 1) A **3D** mode (ARTS-MC)
- 2) Independent Beam Approx. (**IBA**) mode (DISORT)

β_1	$oldsymbol{eta_2}$	β_3
β_4	$oldsymbol{eta}_5$	$oldsymbol{eta}_6$
β_7	$oldsymbol{eta_8}$	$oldsymbol{eta_9}$

2D slice of 3D

IBA

- 1) A **3D** mode (ARTS-MC)
- 2) Independent Beam Approx. (IBA) mode (DISORT)

β_1	$oldsymbol{eta_2}$	β_3
β_4	$oldsymbol{eta}_5$	$oldsymbol{eta}_6$
β_7	$oldsymbol{eta_8}$	$oldsymbol{eta_9}$

2D slice of 3D

IBA

- 1) A **3D** mode (ARTS-MC)
- 2) Independent Beam Approx. (IBA) mode (DISORT)

β_1	$oldsymbol{eta_2}$	$oldsymbol{eta}_3$
β_4	$oldsymbol{eta}_5$	$oldsymbol{eta}_6$
β_7	$oldsymbol{eta}_8$	β_9

2D slice of 3D

IBA

- 1) A **3D** mode (ARTS-MC)
- 2) Independent Beam Approx. (**IBA**) mode (DISORT)

- 1) A **3D** mode (ARTS-MC)
- 2) Independent Beam Approx. (**IBA**) mode (DISORT)
- 3) Plane-parallel approx. (1D) mode (DISORT)
 - ✓ Hydrometeor Number Density average (HND-avg)
 - ✓ Hydrometeor Content average (HC-avg)

β_1	$oldsymbol{eta_2}$	β_3
β_4	$oldsymbol{eta}_5$	$oldsymbol{eta}_6$
β_7	$oldsymbol{eta_8}$	$oldsymbol{eta_9}$

2D slice of 3D

IBA

1**D**

- 1) A **3D** mode (ARTS-MC)
- 2) Independent Beam Approx. (**IBA**) mode (DISORT)
- 3) Plane-parallel approx. (**1D**) mode (DISORT)
 - ✓ Hydrometeor Number Density average (HND-avg)
 - ✓ Hydrometeor Content average (HC-avg)

- o Freq.: 186.3 & 668 GHz
- o FOV–Gauss: 6 & 15 km

β_1	$oldsymbol{eta_2}$	β_3
β_4	$oldsymbol{eta}_5$	$oldsymbol{eta}_6$
β_7	$oldsymbol{eta_8}$	$oldsymbol{eta}_9$

2D slice of 3D

IBA

1**D**

3D Radiative effects

000000

- Calculation modes 3D, IBA, 1D
- A **3D** mode (ARTS-MC)
- Independent Beam Approx. (**IBA**) mode (DISORT)
- Plane-parallel approx. (1D) mode (DISORT)
 - Hydrometeor Number Density average (HND-avg)
 - Hydrometeor Content average (HC-avg)

- Simulations in 2km grid
- Average over FOV

- Freq.: 186.3 & 668 GHz
- FOV-Gauss: 6 & 15 km

β_1	$oldsymbol{eta_2}$	β_3
β_4	$oldsymbol{eta}_5$	$oldsymbol{eta_6}$
β_7	$oldsymbol{eta_8}$	β_9

β_{1-3}	
$oldsymbol{eta}_{ ext{4-6}}$	
β_{7-9}	
1D	

- 1) A **3D** mode (ARTS-MC)
- 2) Independent Beam Approx. (IBA) mode (DISORT)
- 3) Plane-parallel approx. (1D) mode (DISORT)
 - ✓ Hydrometeor Number Density average (HND-avg)
 - ✓ Hydrometeor Content average (HC-avg)

3D vs IBA Horizontal Photon Transport (HPT) effect

=> Neglect of HPT along areas with different properties

IBA vs 1D Beam-Filling (BF) effect

=> Neglect of domain heterogeneities

3D vs 1D Total Effect

000000

CloudSat dBz

3D Radiative effects – Synthetic scene

=> 55 scenes

CloudSat overpasses:

- o Tropics: 30 (July 2015)
 - Mid-Latitudes: 29 (January 2015)=> 58 scenes
- Each scene: 160 km by 200 km

3D Radiative effects – Synthetic scene

6.32

Latitude [°]

6.76

5.88

5.44

3D Radiative effects – Synthetic scene

000000

-25.0

-104.5 -104.1 -103.7 -103.3 -102.9 -102.5

Longitude [°]

5.44

5.88

Latitude [°]

6.32

6.76

7.2

3D Radiative effects – HPT effect

Barlakas and Eriksson., 2020

3D Radiative effects – BF effect

Barlakas and Eriksson., 2020

3D Radiative effects – BF effect

Barlakas and Eriksson., 2020

Summary

- o The horizontal photon transport effect induces a slight overestimation and chiefly random errors. Thus, 3D simulations could be replaced by a bias correction in the forward model.
- o The total effect is consistent with the BF effect. The root mean square error (RMSE) in:
 - ✓ 1DVAR¹ retrievals, it can be ~14 K at the highest frequency and footprint size.
 - ✓ Data assimilation (183 GHz and footprints between 9 and 36 km) is above ~4 K.
- o A significant beam-filling (BF) effect that increases primarily with frequency and, secondly, with footprint size and slant path; RMSE up to ∼14 K.
- o Independent beam approximation (IBA) is a necessity (e.g., retrieval databases).
- A statistical correction scheme by means of a multiplication factor has been developed that compels the errors induced by the 3D effects to be more symmetric (up to 3.2 K).

Outlook

- o Explore the use or the development of correction schemes for the BF effect at mm/sub-mm.
- o Particle orientation and 3D effects including polarization.

ATMS, GMI, MHS, SSMIS, ICI, MWI,... Barlakas and Eriksson., Remote Sens., 2020

¹ 1D variational retrievals: AMSU-B

- Intercomparison
- ARTS vs RRTOV (-SCATT):
 - Clear sky conditions
 - All-sky conditions
- Particle orientation and polarization
- Adapt/extend RRTOV-SCATT:
 - Polarization treatment
 - Particle orientation

Thank you so much for your attention!