ECMWF Data Assimilation Training course
24-28 February 2020

Coupled land-atmosphere data assimilation

Patricia de Rosnay
Outline

• Introduction
 • Snow analysis
 • Soil moisture analysis
 • Summary
Earth system approach

- Consistency of the infrastructure and coupling approaches across the different components
- Modularity to account for the different components in coupled assimilation
Coupled assimilation terminology

Coupled assimilation: observations increments in one component impact the other components

- **Now**, i.e. during the data assimilation window → strongly coupled data assimilation
 - Multiple systems approach (e.g. outer loop coupling): QuasiSCDA
 - Single Integrated system: SCDA
- **Later**, e.g. next assimilation window, -> weakly coupled data assimilation (WCDA)
 - For example: independent DA for all components and interaction through model coupling

Coupled assimilation continuum

- No coupling
- Weakly Coupled Data Assimilation
- Full coupling

See lecture on Coupled DA from P. Browne
Current operational NWP system at ECMWF

Weakly coupled land-atmosphere-wave and sea ice assimilation

Relevant lectures:
- Ocean and sea ice DA → H Zuo
- Coupled DA -> P. Browne
- Reanalysis -> D. Schepers
Coupled land-atmosphere data assimilation

Vertical correlations dominate land surface processes. Each grid point is analysed independently. Land data assimilation is a 2D problem, whereas atmospheric DA is a 4D problem → Separate Land & atmospheric DA systems.

- Flexibility to run offline land analysis without the expensive 4D-Var component

Weakly coupling

Used for the ERA5 reanalysis & NWP
Introduction: Land Surface Data Assimilation (LDAS) for NWP

Snow depth
- **Methods:** Cressman Interpolation (DWD, ECMWF ERA-I), 2D Optimal Interpolation (OI) (ECMWF operational and ERA5, Env. Canada Clim. Ch.)
- **Conventional Observations:** in situ snow depth
- **Satellite data:** NOAA/NESDIS IMS Snow Cover Extent (ECMWF), H-SAF snow cover (UKMO in dvpt)

Soil Moisture
- **Methods:**
 - 1D Optimal Interpolation (Météo-France, Env. Canada CC, ALADIN and HIRLAM)
 - 1D-EnKF (Env. Canada CC)
 - Simplified Extended Kalman Filter (EKF) (DWD, ECMWF, UKMO)
- **Conventional observations:** Analysed SYNOP 2m air relative humidity and temperature, from 2D OI screen level parameters analysis
- **Satellite data:** ASCAT soil moisture (UKMO, ECMWF), SMOS (ECMWF, 2019)

Soil Temperature and Snow temperature
- 1D OI for the first layer of soil and snow temperature (ECMWF, Météo-France)
Outline

• Introduction
• **Snow analysis**
 • Soil moisture analysis
• Summary
Snow in the ECMWF IFS for NWP

Snow Model: Component of H-TESSEL (Dutra et al., JHM 2010, Balsamo et al JHM 2009)

- Single layer snowpack
 - Snow water equivalent SWE (m)
 - Snow Density ρ_s

Observations: de Rosnay et al ECMWF Newsletter 2015
- Conventional snow depth data: SYNOP and National networks
- Snow cover extent: NOAA NESDIS/IMS daily product (4km)

Data Assimilation: de Rosnay et al SG 2014
- Optimal Interpolation (OI) is used to optimally combine the model first guess, in situ snow depth and IMS snow cover
- The result of the data assimilation is the analysis of SWE and snow density → used to initialize NWP.
Interactive Multisensor Snow and Ice Mapping System (IMS)
- Time sequenced imagery from geostationary satellites
- AVHRR,
- VIIRS,
- SSM/I, etc….
- Station data

Northern Hemisphere product
- Daily
- Polar stereographic projection

Information content: Snow/Snow free
Data used at ECMWF:
- 4 km product (NWP, ERA5)

Latency:
Available daily at 23 UTC. Assimilated in the subsequent analysis at 00UTC

http://nsidc.org/data/g02156.html
Snow Observations
Snow SYNOP and National Network data in Europe

In general, good coverage in Europe, but …
- Zero snow depth reporting is an issue with some countries providing observations only when snow depth > zero (e.g. Ukraine)
- Still areas with relatively few snow depth reports

Dedicated network to exchange meteorological data: Global Telecommunication System (GTS)
In situ snow depth observations
Snow depth reports on the GTS

SYNOP TAC + SYNOP BUFR + national BUFR data

Status on 10-15 December 2013
In situ snow depth observations
Snow depth reports on the GTS

SYNOP TAC + SYNOP BUFR + national BUFR data

Status on 10-15 December 2017

See more on snow DA and observations in de Rosnay et al, ECMWF Newsletter article, issue 143, 2015
1. Observed first guess departure Δf_i are computed from the interpolated background at each observation location i.

2. Analysis increments ΔS_k^a at each model grid point k are calculated from:

$$\Delta S_k^a = \sum_{i=1}^{N} w_i \times \Delta f_i$$

3. The optimum weights w_i are given for each grid point k by: $(P + R) w = p$

p : **background error vector** between model grid point k and observation n (dimension of N observations) $p(i) = \sigma^2_b \mu(i,k)$

P : **correlation coefficient matrix of background field error** between all pairs of observations ($N \times N$ observations); $P(i_1,i_2) = \sigma^2_b \times \mu(i_1,i_2)$ with the correlation coefficients $\mu(i_1,i_2)$.

R : **covariance matrix of the observation error** ($N \times N$ observations): $R = \sigma^2_o \times I$

with and $\sigma_b = 3$cm the standard deviation of background errors, σ_o the standard deviation of observation errors (4cm in situ, 8cm IMS)
Snow depth Optimal Interpolation

Correlation coefficients $\mu(i_1,i_2)$ (structure function):

$$\mu(i_1,i_2) = (1 + \frac{r_{i_1i_2}}{L_x})\exp\left(-\frac{r_{i_1i_2}}{L_x}\right)\cdot\exp\left(-\frac{Z_{i_1i_2}}{L_z}\right)$$

L_z: vertical length scale: 800m, L_x: horizontal length scale: 55km

$r_{i_1i_2}$ and $Z_{i_1i_2}$ the horizontal and vertical distances between points i_1 and i_2

Quality Control: reject observation if first guess departure $> \text{Tol} \left(\sigma_b^2 + \sigma_o^2\right)^{1/2}$ with $\text{Tol} = 5$

→ Observation rejected if first guess departure larger than 25 cm for insitu (and 43cm for IMS)

Redundancy rejection: use observation reports closest to analysis time
And use a maximum of 50 observations per grid point
OI vs Cressman

Cressman still used in ERA-Interim and at DWD

In both OI and Cressman, snow depth increments computed as:

\[\Delta S_k^a = \sum_{i=1}^{N} w_i \times \Delta f_i \]

Cressman: weights are function of horizontal and vertical distances. Do not account for observations and background errors. (Cressman, MWR 1959)

OI: The correlation coefficients of P and p follow a second-order autoregressive horizontal structure and a Gaussian for the vertical elevation differences.

OI has longer tails than Cressman and considers more observations. Model/observation information optimally weighted using error statistics.
Snow data assimilation OI vs Cressman

IFS oper before 2010 and ERA-Interim
Cressman Interpolation

IFS oper from 2010 and ERA5
Optimal Interpolation
Assimilation of IMS snow cover

- IMS snow cover (SC) means SC>50%
- But no quantitative information on snow depth
- Relation snow cover (SC)/Snow Depth (SD): SC=50% corresponds to SD=5cm
- Previously: direct insertion of 10cm when IMS has snow & model has no snow
- Issues with overestimated snow
- IFS revision for current cycle: assimilate IMS and account for IMS observation error

Current system:

<table>
<thead>
<tr>
<th>NESDIS</th>
<th>Fst Guess</th>
<th>Snow</th>
<th>No Snow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snow</td>
<td>x</td>
<td>DA 5cm</td>
<td></td>
</tr>
<tr>
<td>No Snow</td>
<td>DA</td>
<td>DA</td>
<td></td>
</tr>
</tbody>
</table>

Error specifications:

BG: $\sigma_b = 3$ cm
SYNOP: $\sigma_{SYNOP} = 4$ cm
IMS: $\sigma_{IMS} = 8$ cm
Snow assimilation: Forecast impact

Impact on snow October 2012 to April 2013 (251 independent in situ observations)

Revised IMS snow cover data assimilation (2013)

<table>
<thead>
<tr>
<th>Snow observed</th>
<th>No snow observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snow in analysis</td>
<td>a Hits</td>
</tr>
<tr>
<td>No snow in analysis</td>
<td>c Misses</td>
</tr>
</tbody>
</table>

The following scores are used for the evaluation:

- Accuracy = \(\frac{a+d}{a+b+c+d} \)
- False alarm ratio = \(\frac{b}{a+b} \)
- Threat score = \(\frac{a}{a+b+c} \)
Snow assimilation: Forecast impact

Impact on snow October 2012 to April 2013 (251 independent in situ observations)

Impact on atmospheric forecasts October 2012 to April 2013 (RMSE new-old)

→ Consistent improvement of snow and atmospheric forecasts

de Rosnay et al., ECMWF Newsletter 143, Spring 2015
Summary on snow analysis

1. Snow initialisation has a large impact on Numerical Weather Forecast

2. Not all NWP systems have a snow analysis
 Snow data assimilation in NWP systems relies on relatively simple approaches

3. DA of *in situ* snow depth and snow cover (IMS used at ECMWF)
 - In situ snow depth reporting: issues on availability and reporting practices
 - National Met services encouraged to improve snow depth reports availability on the Global Telecommunication System (GTS)

4. Current and future developments: aim at using level 1 satellite data to analyse snow water equivalent (mass) → Require appropriate satellite mission and adequate observation operator
Outline

• Introduction
• Snow analysis
• Soil moisture analysis
• Summary
A history of soil moisture analysis at ECMWF

➢ Nudging scheme (1995-1999): soil moisture increments $\Delta x \ (\text{m}^3\text{m}^{-3})$:

$$\Delta x = \Delta t \ D \ C_v(q^a - q^b)$$

- D: nudging coefficient (constant=1.5g/Kg), $\Delta t = 6h$, q specific humidity
- Uses upper air analysis of specific humidity
- Prevents soil moisture drift in summer

➢ Optimal interpolation 1D OI (1999-2010)

$$\Delta x = \alpha (T^a - T^b) + \beta (R^a - R^b)$$

- α and β: optimal coefficients
- OI soil moisture analysis based on a dedicated screen level parameters (T2m Rh2m) analysis

➢ Simplified Extended Kalman Filter (SEKF), Nov 2010-2019

- Motivated by better using T2m, RH2m
- Opening the possibility to assimilate satellite data related to surface soil moisture

➢ EDA-SEKF (since 2019)

- Use the Ensemble Data Assimilation to compute the SEKF Jacobians
ECMWF Soil Analysis in the current operational IFS (cycle 46r1)

Ensemble Data Assimilation (EDA)

EDA Jacobians
T2m, RH2m
& soil moisture
Background

NWP Forecast
Coupled Land-Atmosphere

Soil Analysis (SEKF)
SM1, SM2, SM3

Screen level analysis
(2D-OI)

T_2m RH_2m

\[\sigma_{T2m} = 2K \quad \sigma_{RH2m} = 10\% \]

In situ Observations
T_2m RH_2m

Land initial conditions

Soil Analysis (SEKF)
SM1, SM2, SM3

\[\sigma_{O-T2M} = 1K \quad \sigma_b = 0.01 m^3/m^3 \quad \sigma_{SMOS_NN} = 0.02 + 3*smos\epsilon \]
\[\sigma_{O-RH2M} = 4\% \quad \sigma_{ASCAT} = 0.05 m^3/m^3 \]

Satellite
ASCAT SM
SMOS SM

SMOS Neural network
SMOS TB
SYNOP T2m, RH2m in situ data assimilated in a 2D-OI

Screen level observations are:
- T2m, two meter temperature
- RH2m, relative humidity (RH2m)

Diversity of Report types:
- Drifting buoys, automatic and manual stations on ships, etc..
- Automatic and manual SYNOP stations, METAR (METeorological Airport Reports), etc...

The output of the 2D-OI, the analysed T2m, TH2m, is used as input of the soil analysis
Soil moisture satellite observations

Active microwave data:
ASCAT: Advanced Scatterometer
C-band (5.6GHz) backscattering coefficient
EUMETSAT Operational mission

Passive microwave data:
SMOS: Soil Moisture & Ocean Salinity (2009-)
L-band (1.4 GHz) Brightness Temperature
ESA Earth Explorer, edicated soil moisture mission

Data from **SMAP** (Soil Moisture Active Passive),
NASA soil moisture mission, also available

ASCAT soil moisture (m3m$^{-3}$)

SMOS Brightness temperature (K)

Stdev(O-B) Sept. 2013
Simplified EKF soil moisture analysis

For each grid point, analysed soil moisture state vector \mathbf{x}_a:

$$
\mathbf{x}_a = \mathbf{x}_b + K (\mathbf{y} - H[\mathbf{x}_b])
$$

- \mathbf{x} background soil moisture state vector,
- H non linear observation operator
- \mathbf{y} observation vector
- K Kalman gain matrix, fn of H (linearsation of H), P and R (covariance matrices of background and observation errors).

Used at ECMWF (operations and ERA5), DWD, UKMO

Observations used at ECMWF:
For operational NWP:
- Conventional SYNOP pseudo observations (analysed T2m, RH2m)
- Satellite: MetOp-A/B/C ASCAT and SMOS soil moisture

The simplified EKF is used to corrects the soil moisture trajectory of the Land Surface Model

→ See KF lecture from M Bonavita on Tuesday

Drusch et al., GRL, 2009
de Rosnay et al., ECMWF News Letter 127, 2011
de Rosnay et al., QJRMS, 2013
Simplified EKF soil moisture analysis

\[\mathbf{x}_a = \mathbf{x}_b + K (\mathbf{y} - \mathbf{H}[\mathbf{x}_b]) \]

Elements of the SEKF for each individual grid point in the case of:
- Assimilation of 4 observations: T2m, RH2m, ASCAT_{sm}, SMOS_{sm}
- State vector \(\mathbf{x} \): volumetric soil moisture (SM) of the model layers, l1, l2, l3 (in m^3/m^3)

Control vector

\[
\mathbf{x}_{b(t)} = \begin{bmatrix}
SM_{l1(t)} \\
SM_{l2(t)} \\
SM_{l3(t)}
\end{bmatrix}
\]

Observations vector

\[
y(tobs) = \begin{bmatrix}
T_{2m} \\
RH_{2m} \\
ASCAT_{sm} \\
SMOS_{sm}
\end{bmatrix}
\]

Observations operator

\[
\mathbf{H}[x_{b(t)}] = \begin{bmatrix}
T_{2m} \\
RH_{2m} \\
ASCAT_{sm} \\
SMOS_{sm}
\end{bmatrix}
\]

Observation error

\[
\begin{pmatrix}
1^2 & 0 & 0 & 0 \\
0 & 4^2 & 0 & 0 \\
0 & 0 & 0.05^2 & 0 \\
0 & 0 & 0 & (0.02 + 3 smos\varepsilon)^2
\end{pmatrix}
\]

Background error

\[
\begin{pmatrix}
0.01^2 & 0 & 0 \\
0 & 0.01^2 & 0 \\
0 & 0 & 0.01^2
\end{pmatrix}
\]
Simplified EKF soil moisture analysis (2010-2019)

Jacobians computation in Finite differences (until June 2019)

Estimated by finite differences by perturbing individually each component x_j of the control vector \mathbf{x} by a small amount δx_j. One perturbed model trajectory is computed for each control variable.

In the ECMWF soil analysis the perturbation size is set to $0.01\text{m}^3\text{m}^{-3}$.

$$H = \begin{bmatrix}
\frac{T_{2m\text{pert}1} - T_{2m}}{\delta SM_{l1}} & \frac{T_{2m\text{pert}2} - T_{2m}}{\delta SM_{l2}} & \frac{T_{2m\text{pert}3} - T_{2m}}{\delta SM_{l3}} \\
\frac{RH_{2m\text{pert}1} - RH_{2m}}{\delta SM_{l1}} & \frac{RH_{2m\text{pert}2} - RH_{2m}}{\delta SM_{l2}} & \frac{RH_{2m\text{pert}3} - RH_{2m}}{\delta SM_{l3}} \\
\frac{SM_{l1\text{pert}1} - SM_{l1}}{\delta SM_{l1}} & \frac{SM_{l1\text{pert}2} - SM_{l1}}{\delta SM_{l2}} & \frac{SM_{l1\text{pert}3} - SM_{l1}}{\delta SM_{l3}} \\
\frac{SM_{l2\text{pert}1} - SM_{l1}}{\delta SM_{l1}} & \frac{SM_{l2\text{pert}2} - SM_{l1}}{\delta SM_{l2}} & \frac{SM_{l2\text{pert}3} - SM_{l1}}{\delta SM_{l3}} \\
\frac{SM_{l3\text{pert}1} - SM_{l1}}{\delta SM_{l1}} & \frac{SM_{l3\text{pert}2} - SM_{l1}}{\delta SM_{l2}} & \frac{SM_{l3\text{pert}3} - SM_{l1}}{\delta SM_{l3}}
\end{bmatrix}$$
Simplified EKF soil moisture analysis (since June 2019)

Jacobians computation based on the Ensemble Data Assimilation (EDA)
Use the EDA spread to compute covariances and the SEKF Jacobians

In the case of assimilation of four observations T2m, RH2m, ASCAT, SMOS:

\[
H = \begin{bmatrix}
\text{Covar}(T_{2m}, \text{SM}_1) / \text{Var}(\text{SM}_1) & \text{Covar}(T_{2m}, \text{SM}_2) / \text{Var}(\text{SM}_2) & \text{Covar}(T_{2m}, \text{SM}_3) / \text{Var}(\text{SM}_3) \\
\text{Covar}(RH_{2m}, \text{SM}_1) / \text{Var}(\text{SM}_1) & \text{Covar}(RH_{2m}, \text{SM}_2) / \text{Var}(\text{SM}_2) & \text{Covar}(RH_{2m}, \text{SM}_3) / \text{Var}(\text{SM}_3) \\
\text{Covar}(\text{SM}_1, \text{SM}_1) / \text{Var}(\text{SM}_1) & \text{Covar}(\text{SM}_1, \text{SM}_2) / \text{Var}(\text{SM}_2) & \text{Covar}(\text{SM}_1, \text{SM}_3) / \text{Var}(\text{SM}_3) \\
\text{Covar}(\text{SM}_2, \text{SM}_1) / \text{Var}(\text{SM}_1) & \text{Covar}(\text{SM}_2, \text{SM}_2) / \text{Var}(\text{SM}_2) & \text{Covar}(\text{SM}_2, \text{SM}_3) / \text{Var}(\text{SM}_3) \\
\text{Covar}(\text{SM}_3, \text{SM}_1) / \text{Var}(\text{SM}_1) & \text{Covar}(\text{SM}_3, \text{SM}_2) / \text{Var}(\text{SM}_2) & \text{Covar}(\text{SM}_3, \text{SM}_3) / \text{Var}(\text{SM}_3)
\end{bmatrix}
\]

\[
\rho = \begin{bmatrix}
\rho_1 & \rho_2 & \rho_3 \\
\rho_1 & \rho_2 & \rho_3 \\
\rho_1 & \rho_2 & \rho_3 \\
\rho_1 & \rho_2 & \rho_3
\end{bmatrix}
\]

with \(i \) soil layer index, \(\rho_i = 1/[1+ (i-1) \alpha_{\text{sekf}}] \) and \(\alpha_{\text{sekf}} = 0.6 \) tapering coefficient
Soil moisture increments: Case study with ASCAT, T2m, RH2m

Volumetric Soil Moisture increments (m³/m³) (accumulated) 25-30 June 2013

Vertically integrated Soil Moisture increments (stDev in mm)

<table>
<thead>
<tr>
<th></th>
<th>SYNOP</th>
<th>ASCAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1</td>
<td>0.68</td>
<td>1.43</td>
</tr>
<tr>
<td>Layer 2</td>
<td>1.48</td>
<td>0.68</td>
</tr>
<tr>
<td>Layer 3</td>
<td>4.28</td>
<td>0.46</td>
</tr>
</tbody>
</table>

ASCAT more increments than SYNOP at surface
SYNOP give more increments at depth
⇒ For 12h DA window, link obs to root zone stronger for T2m,RH2m than for surface soil moisture observations
Soil analysis for NWP: impact on the atmospheric forecast

- Test with no soil Analysis (Open Loop land)
- Reference with 2013 version of soil analysis
- NWP with current surface analysis (reduced obs error compared to 2013)

→ Very large impact of soil moisture initialisation on near-surface weather forecast
Summary on soil moisture analysis

- Significant **impact** of soil moisture analysis on low level atmospheric forecasts

- **Approaches**: 1D-OI (Météo-France, ECMWF ERA-I); SEKF (DWD, ECMWF, UKMO); SEKF-EDA (ECMWF), **Offline Land Surface Model (LSM)** using analysed atmospheric forcing (NCEP: GLDAS / NLDAS)

- **Data**: Most Centres rely on screen level data (**T2M and RH2m**) through a dedicated OI analysis, **ASCAT** (UKMO, ECMWF NWP & EUMETSAT H-SAF), **SMOS** soil moisture (ECMWF)
Summary

➢ Most NWP centres analyse soil moisture and/or snow depth
➢ Variety of DA methods for snow and soil moisture at ECMWF and other NWP centres
➢ Land Data Assimilation Systems: run separately from the atmospheric data assimilation, but first guess forecast is coupled → weakly coupled assimilation, coupling enhanced with SEKF-EDA
➢ Longer term: coupling with river routing
Bibliography

- de Rosnay P., Isaksen L., Dahoui M.: Snow data assimilation at ECMWF, ECMWF Newsletter no 143, article pp 26-31, Spring 2015
- 2098–2116.