Observation errors

Niels Bormann

NWP SAF Training Course
Outline

1. What are observation errors?
2. Estimating observation errors
3. Specification of observation errors in practice
4. Accounting for observation error correlations
5. Summary
Outline

1. What are observation errors?
2. Estimating observation errors
3. Specification of observation errors in practice
4. Accounting for observation error correlations
5. Summary
Errors in observations

• Every observation has an error vs the truth:
 – Systematic error
 • Needs to be removed through bias correction (see separate lecture)
 – Random error
 • Topic of this lecture!
Contributions to observation error

Measurement error
E.g., instrument noise for satellite radiances

Forward model (observation operator) error
E.g., radiative transfer error

Representativeness error
E.g., point measurement vs model representation

Quality control/pre-processing error
E.g., error due to the cloud detection scheme missing some clouds in clear-sky radiance assimilation
Contributions to observation error

Measurement error
E.g., instrument noise for satellite radiances

Forward model (observation operator) error
E.g., radiative transfer error

- Are the errors situation-dependent?
- Are the errors correlated (spatially, temporally, between channels)?
- Are the errors systematic (→bias correction)?

Representativeness error
E.g., point measurement vs model representation

Quality control error
E.g., error due to the cloud detection scheme missing some clouds in clear-sky radiance assimilation
Examples of situation-dependence of observation error

- Cloud/rain-affected radiances: Representativeness error is much larger in cloudy/rainy regions than in clear-sky regions.

- Effect of height assignment error for Atmospheric Motion Vectors:

 ![Diagram showing wind shear and height assignment error](chart.png)

 - Strong shear – larger wind error due to height assignment error
 - Low shear – small wind error due to height assignment error

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS
Examples of correlated observation error

- Different channels with similar radiative transfer error.
- Different channels with similar error in spatial representativeness.
- Different channels with similar cloud sensitivity in clear-sky assimilation.
- Even instrument noise can be correlated.
Observation error and the cost function

- In data assimilation, observation errors are commonly assumed Gaussian.
- Denoted by the observation error covariance matrix “R” in the observation cost function:
 \[
 J(x) = \frac{1}{2} (x - x_b)^T B^{-1} (x - x_b) + \frac{1}{2} (y - H[x])^T R^{-1} (y - H[x])
 \]
- It is often specified through the square root of the diagonals (“σ_o”) and a correlation matrix (which can be the identity matrix).
Role of observation error

- **R** and the background error **B** together determine the weight of an observation in the assimilation.
- In the linear case, the minimum of the cost function can be found at x_a:

\[
(x_a - x_b) = BH^T (HBH^T + R)^{-1} (y - Hx_b)
\]

- **“Large” observation error** \rightarrow **smaller increment**, analysis draws less closely to the observations
- **“Small” observation error** \rightarrow **larger increment**, analysis draws more closely to the observations
Current observation error specification for satellite data in the ECMWF system

• Globally constant, diagonal, dependent on channel only:
 – AIRS, MWHS

• Globally constant, inter-channel error correlations taken into account:
 – IASI, CrIS, ATMS

• Globally constant fraction, dependent on impact parameter; diagonal:
 – GPS-RO

• Situation dependent, diagonal:
 – AMSU-A: dependent on satellite, channel, and RT-model contribution
 – All-sky treatment of MW imagers, MW humidity sounders: dependent on channel and cloud amount
 – AMVs: dependent on level and shear (and satellite, channel, height assignment method)
 – Aeolus: based on physically estimated error for each derived wind
Outline

1. What are observation errors?
2. Estimating observation errors
3. Specification of observation errors in practice
4. Accounting for observation error correlations
5. Summary
How can we estimate observation errors?

• Observation errors are *departures from the truth* – which we don’t know.

• We can only *estimate* observation errors. Several methods exist to do this, broadly categorised as:

 - **Error inventory:**
 • Based on considering all contributions to the error/uncertainty

 - **Diagnostics with collocated observations, e.g.:**
 • Hollingsworth/Lönnberg on collocated observations
 • Triple-collocations

 - **Diagnostics based on output from DA systems, e.g.:**
 • O-b statistics
 • Hollingsworth/Lönnberg
 • Desroziers et al 2005
 • Methods that rely on an explicit estimate of B

 - **Adjoint-based methods**
Error inventory

- Estimate the error from *physical estimates of all uncertainty* contributions.
- Example: error inventory for IASI

![Graph showing estimated error vs IASI channel index]

- Instrument noise (information from data providers)
- Radiative transfer error (difficult…)
- Spatial representativeness error (e.g., through high vs low-resolution simulations)
- Cloud detection error (e.g., using simulations of cloudy radiances)
- Total error

(Courtesy Hyoung-Wook Chun, Reima Eresmaa)
Error inventory

- Estimate the error from **physical estimates of all uncertainty** contributions.
- Example: error inventory for IASI

![Graph showing total error correlation]

- Very useful to **understand** error contributions.
- **How realistic** is each estimate?
Error inventory and physical observation error models

• Other applications of an inventory approach:
 – Physical error models: propagate parameter uncertainty through observation operator/retrieval
 – Useful for identifying leading contributors of observational uncertainty
 – Basis for “observation error models” to capture situation-dependence of observation errors

An observation error model for the height assignment uncertainty could be:
\[\sigma_{HA} = f(\Delta p, \text{shear in background}) \]
How can we estimate observation errors?

- Observation errors are *departures from the truth* – which we don’t know.

- We can only *estimate* observation errors. Several methods exist to do this, broadly categorised as:

 - **Error inventory:**

 - Based on considering all contributions to the error/uncertainty

 - **Diagnostics with collocated observations, e.g.:**

 - Hollingsworth/Lönnberg on collocated observations
 - Triple-collocations

 - **Diagnostics based on output from DA systems, e.g.:**

 - O-b statistics
 - Hollingsworth/Lönnberg
 - Desroziers et al 2005
 - Methods that rely on an explicit estimate of B

 - **Adjoint-based methods**
Departure-based diagnostics

• Several methods have been developed that are based on departures from data assimilation systems (ie o-b, o-a).

• If observation errors and background errors are uncorrelated then:

\[
\text{Cov}[(y - H[x_b]),(y - H[x_b])] = H B_{\text{true}} H^T + R_{\text{true}}
\]

• In this case, stdev(o-b) is an upper bound for \(\sigma_o\).

• Statistics of background departures give information on observation and background error combined. To separate the two, we need to make assumptions (which may or may not be true).
Departure-based observation error diagnostics: Methods that rely on an estimate of the background error

• **Basic assumptions:**

 – Background and observation error are *uncorrelated.*

 – We have a **reliable estimate of the background error**, for instance:

 • Background error is small: \[R = \text{Cov}[(y - H[x_b]), (y - H[x_b])] - HBH^T \]

 • Or: we “know” \(HB_{\text{true}}^T \) from the assimilation system:

 \[R = \text{Cov}[(y - H[x_b]), (y - H[x_b])] - H B_{\text{true}}^T \]
Departure-based observation error diagnostics: Hollingsworth/Loennberg method (I)

• **Basic assumption:**
 – Background errors are spatially correlated, whereas observation errors are not.
 – This allows to separate the two contributions to the variances of background departures.

• **Recipe:**
 – Take a large database of pairs of departures and bin by distance between the observations.
 – Calculate covariance of departures for each bin.

• **Drawback:**
 – Not reliable when observation errors are spatially correlated.
Departure-based observation error diagnostics: Hollingsworth/Loennberg method (II)

• Similar methods have been used with differences between two sets of **collocated observations**:

 – Example: AMVs collocated with radiosondes (Bormann et al 2003).

 • Radiosonde error assumed spatially uncorrelated.
Departure-based observation error diagnostics: Desroziers diagnostic (I)

• **Basic assumptions:**
 – Assimilation process can be adequately described through linear estimation theory.
 – Weights used in the assimilation system are consistent with true observation and background errors.

• Then the following relationship can be derived:

\[R = Cov[d_a, d_b] \]

with \(d_a = (y - H[x_a]) \) (analysis departure)

\(d_b = (y - H[x_b]) \) (background departure)

(see Desroziers et al. 2005, QJRMS)

• **Consistency diagnostic** for the specification of \(R \). Increasingly used to estimate \(R \).
Departure-based observation error diagnostics: Desroziers diagnostic (II)

• Very easy to use – all ingredients readily available in an assimilation system.
• Can be applied iteratively.

• It *will give incorrect estimates* if its assumptions are violated (as with any method!).

• For real assimilation systems, the limits of applicability of the diagnostic for estimating observation errors is still subject of research.
Some points on departure-based diagnostics

• All departure-based diagnostics rely on assumptions (which may or may not be true):
 – Assume we know the background error characteristics → remove B
 – Assume a certain structure of the errors → Hollingsworth/Lönnberg
 – Assume weights used in the assimilation system are accurate → Desroziers diagnostic
• All diagnostics additionally assume that the error in the observations and background are uncorrelated.

• Before applying any diagnostic, think about whether the assumptions are likely to be true.
• It is best to use several diagnostics to avoid misleading estimates due to violated assumptions.
• Diagnostics do not tell you where the error comes from.
 – Additional physical understanding of the error sources will be beneficial → error inventory.
 – Diagnostics can be used together with physical error models.
Examples of applying observation error diagnostics: AMSU-A

Diagnostics for σ_o
Examples of applying observation error diagnostics: AMSU-A

Inter-channel error correlations:

Hollingworth/Loennberg

Desroziers
Examples of applying observation error diagnostics: AMSU-A

Spatial error correlations:

- **Channel 5**
 - Red line: Desroziers method
 - Blue line: Background error method

- **Channel 7**
 - Red line: Desroziers method
 - Blue line: Background error method
Examples of applying observation error diagnostics: IASI

Diagnostics for σ_0
Examples of applying observation error diagnostics: IASI

Inter-channel error correlations
Examples of applying observation error diagnostics: IASI

Inter-channel error correlations

Humidity
Ozone
Outline

1. What are observation errors?
2. Estimating observation errors
3. Specification of observation errors in practice
4. Accounting for observation error correlations
5. Summary
How do I specify observation errors in practice?

- Observation error diagnostics or error inventories can provide guidance for observation error specification in DA, including on:
 - *Relative size* of observation and background errors
 - Presence of observation *error correlations*
 - *Situation-dependence* of observation errors

- **But:**
 - Estimates might have short-comings (violated assumptions).
 - Observation errors specified in assimilation systems often need to be *simplified*:
 - Observation error covariance is often *assumed to be diagonal or globally constant*.

 → *Assumed* observation errors may need *adjustments* compared to estimated ones.
Too large assumed observation errors tend to be safer than too small ones. Why?

Consider a linear combination of two estimates x_b and y:

$$x_a = \alpha x_b + (1 - \alpha) y$$

The error variance of the linear combination is:

$$\sigma_a^2 = \alpha^2 \sigma_b^2 + (1 - \alpha)^2 \sigma_o^2$$

The optimal weighting (ie minimum σ_a) is:

$$\alpha = \frac{\sigma_o^2}{\sigma_b^2 + \sigma_o^2}$$

Danger zone: Too small assumed σ_o will lead to an analysis worse than the background when the (true) $\sigma_o > \sigma_b$. Assuming an inflated σ_o will never result in deterioration.
What to do when there are error correlations?
Option 1: Thinning

• If the observations have **spatial error correlations, but these are neglected** in the assimilation system, assimilating these observations too densely can have a **negative effect**.

• **Pragmatic solution 1**: Select one observation within a “thinning box”.

• See Liu and Rabier (2003), QJRMS: “Optimal” thinning when $r \approx 0.15-0.2$

• Using **fewer** observations gives **better** results!

• (But we lose out on information on smaller scales.)

![Diagram showing analysis error vs. observation interval](image-url)
What to do when there are error correlations?
Option 2: Inflation

- If the observations have *error correlations, but these are neglected* in the assimilation system, assimilating them can have a *negative effect*.

- **Pragmatic solution 2**: Use larger σ_o than expected (“*Error inflation*”).

- **Neglecting error correlation with no inflation** can result in an analysis that is *worse* than the background!

- Note: Background departure statistics for other observations are a useful indicator to tune observation errors.
What to do when there are error correlations? Combining thinning and inflation

- In case of spatial error correlations, thinning and inflation can be used together.
- Example: Use of AMSU-A in the Environment Canada system (Bedard et al. 2019, ITSC-22)
 - Optimal inflation factor is larger with less thinning.

Impact on vertically averaged global 48-hour forecast error
Outline

1. What are observation errors?
2. Estimating observation errors
3. Specification of observation errors in practice
4. Accounting for observation error correlations
5. Summary
Accounting for error correlations

• Accounting for observation error correlations is an area of active research.

• Efficient methods exist if the error correlations are restricted to small groups of observations (e.g., *inter-channel error correlations*).

 – E.g., calculate $R^{-1} (y - H(x))$ without explicit inversion of R, by using Cholesky decomposition (algorithm for solving equations of the form $Az = b$).

 – Used operationally for IASI, CrIS and ATMS at ECMWF (and elsewhere)

• Accounting for *spatial error correlations* is technically more difficult in variational algorithms, though methods are being developed.
What is the effect of error correlations?

If errors \textit{are correlated} and we \textit{assume no error correlations}, we assign…

- … an error that is \textit{too small} for features along the blue direction (mean-like features), leading to over-weighting of the observations. Hence inflation helps.
- … an error that is \textit{too large} for features along the red direction (gradient-type features).
What is the effect of error correlations?

Uncorrelated error

\[
R = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]

Correlated error

\[
R = \begin{pmatrix}
1 & 0.8 \\
0.8 & 1
\end{pmatrix}
\]

Similarly, when we account for observation error correlations we tell the assimilation system that…

… departures that are similar for different observations are more likely due to errors in the observations.

… departures that are different for different observations are less likely due to errors in the observations.
Example: Assimilation of a IASI spectrum (I)

Assimilate a single IASI spectrum,
• assuming no error correlations,
• assuming diagnosed error correlations (σ_o unchanged in both cases).

Obs-background departure (all channels assimilated)
Example: Assimilation of a IASI spectrum (I)

Assimilate a single IASI spectrum,
• assuming no error correlations,
• assuming diagnosed error correlations (σ_o unchanged in both cases).

Similar departures → increments reduced with error correlations taken into account
Example: Assimilation of a IASI spectrum (II)

Assimilate a single IASI spectrum,
• assuming no error correlations,
• assuming diagnosed error correlations (σ_o unchanged in both cases).

Different departures \rightarrow increments *increased* with error correlations taken into account.
Example: Assimilation of a IASI spectrum (II)

Assimilate a single IASI spectrum,
• assuming no error correlations,
• assuming diagnosed error correlations (σ_o unchanged in both cases).

Introducing error correlations will change the weighting of the observations in a situation/depature-dependent way.

Different departures \rightarrow increments *increased* with error correlations taken into account.
Effect of accounting for error correlations in the assimilation of IASI

Most centres now take inter-channel error correlations into account for the assimilation of hyperspectral IR data.
Some points on accounting for observation error correlations

• Accounting for observation error correlations is an **active area of research**.
• **Benefits** have been **demonstrated** at many centres for the assimilation of hyperspectral IR data.
• Note:
 – Assuming error correlations puts **more weight on differences between observations**. Are these differences reliable? How reliable are **inter-channel calibration/bias correction**?
 – Are the **estimates of error correlations reliable**?
 – Accounting for observation error correlations can affect the **conditioning** of the assimilation and lead to slower convergence.
 – Error correlation matrices **may need adjustments** (“re-conditioning”, inflation).
• How important it is to account for error correlations may additionally depend on the structure of the background error.
Outline

1. What are observation errors?
2. Estimating observation errors
3. Specification of observation errors in practice
4. Accounting for observation error correlations
5. Summary
Summary

• Assigned observation and background errors determine how much weight an observation receives in the assimilation.

• For satellite data, “true” observation errors are often correlated (spatially, in time, between channels, etc) and situation-dependent.

• Careful use of departure-based diagnostics can provide guidance on the setting of observation errors.

• Diagonal observation errors are still widely assumed for many observations, and thinning and error inflation are used to counter-act the effects of error correlations.

• “Observation error models” are used to account for situation-dependence of observation errors.

• Accounting for observation error correlations has become more common in the last few years and is an active area of research.
Further reading

• Bormann and Bauer (2010): Estimates of spatial and inter-channel observation error characteristics for current sounder radiances for NWP, part I: Methods and application to ATOVS data. QJRMS, 136, 1036-1050.

• Bormann et al. (2010): Estimates of spatial and inter-channel observation error characteristics for current sounder radiances for NWP, part II: Application to AIRS and IASI. QJRMS, 136, 1051-1063.

• Desroziers et al. (2005): Diagnosis of observation, background and analysis error statistics in observation space. QJRMS, 131, 3385-3396.

• Liu and Rabier (2003): The potential of high-density observations for numerical weather prediction: A study with simulated observations. QJRMS, 129, 3013-3035.

Vacancies for EUMETSAT Research Fellowships at ECMWF

• **All-sky assimilation of radiances from microwave instruments in NWP**
 – Up to 5-year contract
 – Deadline 16 March 2020

• **Assimilation of geostationary radiances in NWP**
 – Up to 3-year contract
 – Deadline 16 March 2020

For more information see:
https://www.eumetsat.int/website/home/AboutUs/Jobs/Vacancies/index.html
Or
https://www.ecmwf.int/en/about/jobs/jobs(ecmwf)