Rapid ascents embedded in a WCB observed and modeled at km-scale resolution

Nicolas BLANCHARD¹, Jean-Pierre CHABOUREAU¹, <u>Florian PANTILLON¹ and Julien DELANOË²</u>

¹ Laboratoire d'Aérologie, University of Toulouse, CNRS, UPS, Toulouse, France

² LATMOS-IPSL, CNRS/INSU, University of Versailles, Guyancourt, France

ECMWF Virtual Workshop Warm Conveyor Belts – a challenge to forecasting 10-12 March 2020

Motivation

WCBs are **continuously rising** air masses which typically ascend 600 hPa in 48 h (*Browning, 1986; Wernli and Davies, 1997; Madonna et al., 2014*)

Recent model studies highlight the occurrence of **rapid ascents** embedded in WCBs (*Rasp et al., 2016; Oertel et al., 2019; 2020*)

Schematic by Oertel et al. (2019)

New opportunities at mesoscale

- **Observations** at km-scale resolution from NAWDEX field campaign
- **Simulations** at km-scale resolution over large domains thanks to HPC

Here: "Stalactite" cyclone observed on Oct 2nd 2016 during NAWDEX IOP6
1) What are the WCB characteristics for this case study?
2) What are the processes leading to fast WCB ascents?

Simulation and observations

- ∆x=2.5 km
 → convection permitting
- Init 00 UTC, 2 Oct 2016; t=36h
- IC+LBC ECMWF analyses

Identification of rapid ascents

 \rightarrow online Lagrangian trajectories: from passive tracers at all grid point (*Gheusi and Stein 2002*)

 \rightarrow **objects**: connected grid points with vertical velocity above threshold (*Dauhut et al. 2016*)

Observations

- RASTA cloud Doppler radar (95 GHz) Delanoë et al., 2007
- MSG satellite infrared images (10.8 µm)

Structure of the Stalactite cyclone

WCB identification at 16 UTC

Contours: equivalent potential temperature at $z \sim 1 \text{ km}$ (K)

Two categories of WCB ascents

Fast ascents if **maximum** pressure decrease during 2-h segment $\Delta P_{2h} \leq -100hPa$ (Oertel et al. 2019)

Total 12-h ascent

Trajectories between 10–22 UTC

- Location of slow vs. fast ascents?
- Altitude of slow vs. fast ascents?
- Proportion of cyclonic vs. anticyclonic branch?

Location of WCB ascents at 16 UTC

Temporal evolution of WCB ascents

Zoom on flight leg at 15 UTC

Fast ascents at 15 UTC

Contours: wind > 30/35 m/s

Zoom on flight leg at 16 UTC

Fast ascents at 16 UTC

8

2

3

Contours: wind > 30/35 m/s

9

→ Mid-level (upper/lower) convection located at western edge of WCB

Temporal evolution of the identified convective cells

- Organized low-level convection: stays in WCB core, cyclonic branch
- Isolated shallow convection: stays at western edge of WCB, cyclonic branch
- Mid-level (upper/lower) convection: stays at western edge of WCB, then anticyclonic or cyclonic branch = bifurcation depending on altitude

Work in progress: predictability of NAWDEX cyclones

WCBs can impact cyclone dynamics

 \rightarrow contribution of WCB representation to cyclone predictability?

→ **systematic study** during NAWDEX!

Meso-NH runs of intensification phase

- Large domain 3000 x 3000 km
- Initialization 48h (early) / 36h (late) before time of maximum intensity
- dx=10km (low res) / 2.5km (high res)
- To do: sensitivity to representation of microphysics, surface fluxes, etc.

8 Early init low res Early init high res 6 Late init low res Error in intensity (hPa) Late init high res 4 2 C -2 IOP4_ IOP10 IOP1 IOP2_ IOP5_ IOP6_ IOP7_ IOP8_ IOP9_ IOP3_

Error in MSLP minimum for all IOPs

Example **Stalactite cyclone**: low error and sensitivity \rightarrow why?

Conclusions

"Stalactite" cyclone on 2nd Oct 2016 observed and modeled at km-scale resolution

1. What are the WCB characteristics for this case study?

• 1/3 of fast ascents ($\Delta P_{2h} \leq -100hPa$)

→ located to the west and ~1-km lower than slow ascents

2/3 of cyclonic trajectories, 4/5 for fast ascents and 3/5 for slow ascents
 → located behind and ~3-km lower than anticyclonic ascents

2. What are the processes leading to fast WCB ascents?

- Organized low-level convection: WCB core, east of LLJ, cyclonic branch
- Isolated shallow convection: western edge WCB and LLJ, cyclonic branch
- Isolated mid-level convection : western edge WCB, branch depends on altitude