

Young Investigator Group VH-NG-1243: "Sub-seasonal PREdictAbility: understanding the role of Diabatic OUTflow" (SPREADOUT)



HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

## Verification of warm conveyor belts in ECMWF IFS subseasonal reforecasts

#### Jan Wandel, Julian F. Quinting, Christian M. Grams

Institute of Meteorology and Climate Research





## Motivation: Forecast bust cases and the link to WCB forecast



#### Wcb trajectories



Karlsruher Institut für Technologie

## Motivation: Forecast bust cases and the link to WCB forecast



#### Wcb trajectories



- Forecast bust case can be linked to a misrepresentation of WCB in forecast model
- (f.e. Grams et al., 2018)
- Upper-level diabatic outflow can affect largescale flow regimes (Grams and Archambault,

2016)

Studies on WCB verification have been limited to single cases or winter seasons



## Motivation: Forecast bust cases and the link to WCB forecast



#### Wcb trajectories



- Forecast bust case can be linked to a misrepresentation of WCB in forecast model
- (f.e. Grams et al., 2018)
- Upper-level diabatic outflow can affect largescale flow regimes (Grams and Archambault,

2016)

Studies on WCB verification have been limited

to single cases or winter seasons

→ systematic verification of WCB forecast





200 300 400 500 600 700 800 900 1

Lagrangian definition hinders systematic verification of WCB forecast





Lagrangian definition hinders systematic verification of WCB forecast



Statistical model can be used as a appropriate representation of inflow, ascent and outflow phase of WCB





Lagrangian definition hinders systematic verification of WCB forecast



Statistical model can be used as a appropriate representation of inflow, ascent and outflow phase of WCB

| Status on<br>2020-01-16 | Time<br>range | Resolution      | Ens.<br>Size | Frequency | Re-<br>forecasts | Rfc length    | Rfc<br>frequency | Rfc<br>size | Remarks          |
|-------------------------|---------------|-----------------|--------------|-----------|------------------|---------------|------------------|-------------|------------------|
| BoM (ammc)              | d 0-62        | T47L17          | 3*11         | 2/week    | fix              | 1981-2013     | 6/month          | 3*11        |                  |
| CMA (babj)              | d 0-60        | T266L56         | 4            | 2/week    | fix *            | 2004-2018     | 2/week           | 4           |                  |
| CNR-ISAC (isac)         | d 0-32        | 0.75x0.56 L54   | 41           | weekly    | fix              | 1981-2010     | every 5 days     | 5           |                  |
| CNRM (lfpw)             | d 0-32        | T255L91         | 51           | weekly    | fix              | 1993-2014     | 4/month          | 15          |                  |
| ECCC (cwao)             | d 0-32        | 0.45x0.45 L40   | 21           | weekly    | on the fly       | 1998-2017     | weekly           | 4           | control forecast |
| ECMWF (ecmf)            | d 0-46        | Tco639/319 L91  | 51           | 2/week    | on the fly       | past 20 years | 2/week           | 11          |                  |
| HMCR (rums)             | d 0-61        | 1.1x1.4 L28     | 20           | weekly    | on the fly       | 1985-2010     | weekly           | 10          |                  |
| JMA (rjtd)              | d 0-33        | TI479/TI319L100 | 50           | weekly    | fix              | 1981-2010     | 3/month          | 5           |                  |
| KMA (rksl)              | d 0-60        | N216L85         | 4            | daily     | on the fly       | 1991-2010     | 4/month          | 3           |                  |
| NCEP (kwbc)             | d 0-44        | T126L64         | 16           | daily     | fix              | 1999-2010     | daily            | 4           |                  |
| UKMO (egrr)             | d 0-60        | N216L85         | 4            | daily     | on the fly       | 1993-2016     | 4/month          | 7           |                  |

Subseasonal-to-Seasonal database (S2S database) contains compact and thorough data set





Lagrangian definition hinders systematic verification of WCB forecast



Statistical model can be used as a appropriate representation of inflow, ascent and outflow phase of WCB ECMWF IFS reforecasts from 1997-2017 with 11 ensemble members can be used to investigate WCB forecast with the statistical model

| Status on<br>020-01-16 | Time<br>range | Resolution      | Ens.<br>Size | Frequency | Re-<br>forecasts | Rfc length    | Rfc<br>frequency | Rfc<br>size | Remarks          |
|------------------------|---------------|-----------------|--------------|-----------|------------------|---------------|------------------|-------------|------------------|
| IoM (ammc)             | d 0-62        | T47L17          | 3*11         | 2/week    | fix              | 1981-2013     | 6/month          | 3*11        |                  |
| CMA (babj)             | d 0-60        | T266L56         | 4            | 2/week    | fix *            | 2004-2018     | 2/week           | 4           |                  |
| CNR-ISAC (isac)        | d 0-32        | 0.75x0.56 L54   | 41           | weekly    | fix              | 1981-2010     | every 5 days     | 5           |                  |
| CNRM (Ifpw)            | d 0-32        | T255L91         | 51           | weekly    | fix              | 1993-2014     | 4/month          | 15          |                  |
| ECCC (cwao)            | d 0-32        | 0.45x0.45 L40   | 21           | weekly    | on the fly       | 1998-2017     | weekly           | 4           | control forecast |
| ECMWF (ecmf)           | d 0-46        | Tco639/319 L91  | 51           | 2/week    | on the fly       | past 20 years | 2/week           | 11          |                  |
| HMCR (rums)            | d 0-61        | 1.1x1.4 L28     | 20           | weekly    | on the fly       | 1985-2010     | weekly           | 10          |                  |
| JMA (rjtd)             | d 0-33        | TI479/TI319L100 | 50           | weekly    | fix              | 1981-2010     | 3/month          | 5           |                  |
| KMA (rksl)             | d 0-60        | N216L85         | 4            | daily     | on the fly       | 1991-2010     | 4/month          | 3           |                  |
| NCEP (kwbc)            | d 0-44        | T126L64         | 16           | daily     | fix              | 1999-2010     | daily            | 4           |                  |
| JKMO (earr)            | d 0-60        | N216L85         | 4            | daily     | on the fly       | 1993-2016     | 4/month          | 7           |                  |

Subseasonal-to-Seasonal database (S2S database) contains compact and thorough data set

#### Variables used in statistical model







Outflow

Thickness advection 700 hPa Meridional moisture transport 850 hPa Moisture flux convergence 1000 hPa Moist PV 500 hPa

Relative vorticity 850 hPa Realtive humidity 700 hPa Thickness advection 300 hPa Meridional moisture transport 500 hPa Relative Vorticity 300 hPa

Relative humidity 300 hPa Divergent wind 300 hPa Static stability 500 hPa

#### <u>Calculation of conditional probabilities p:</u>

$$g = \beta_0 + \beta_1 * var1 + \beta_2 * var2 + \beta_3 * var3 + \beta_4 * var4$$

$$p = \frac{1}{1 + e^{-1*g}}$$









Applying a threshold criteria











3 day forecast Initial time: 20160306\_00



0/1 Mask



3 day forecast Initial time: 20160306\_00 2 ensemble members



0/1 Mask





3 day forecast Initial time: 20160306\_00 2 ensemble members



0/1 Mask







1.000

0.875

0.750

0.625

0.500

0.375

0.250

0.125

0.000



#### **Overview**



#### Bias

- $\rightarrow$  Bias of **conditional probabilities** for outflow phase
- → Frequency bias of outflow masks
- Verification (ensemble probabilities)
  - → Forecast skill of ensemble probabilities for outflow
  - → Forecast skill on day 3 for **inflow, ascent, outflow**
  - → Verification of **weekly outflow probabilities**

#### **Bias conditional probabilities - outflow - DJF**





### **Bias conditional probabilities - outflow - DJF**





### Bias conditional probabilities - outflow - DJF



#### - DJF - DJF Mean outflow frequency in ERA Interim



### Verification of WCB ensemble probabilities in ECMWF IFS reforecasts









Pacific
 Atlantic/European
 Europe

## Outflow forecast skill in ECMWF IFS reforecasts - DJF





Jan Wandel - Verification of warm conveyor belts in ECMWF IFS reforecasts

### **Outflow forecast skill in ECMWF IFS** reforecasts - DJF





## Outflow forecast skill in ECMWF IFS reforecasts - DJF





#### **Outflow forecast skill in ECMWF IFS reforecasts - DJF**





### Forecast skill outflow Day 3

Forecast skill realtive to hemisphere mean (NH: 0.34, SH: 0.31) Day 3



# Inflow, ascent forecast skill in ECMWF IFS reforecasts - DJF Day 3





Jan Wandel - Verification of warm conveyor belts in ECMWF IFS reforecasts

## Forecast skill of weekly outflow frequencies - DJF





Jan Wandel - Verification of warm conveyor belts in ECMWF IFS reforecasts

## Forecast skill of weekly outflow frequencies - DJF





## Forecast skill of weekly WCB frequencies - DJF



Karlsruher Institut für

### Summary WCB verification (from statisitcal model)









Systematic investigation of WCBs (calculated

with **statistical model**) in ECMWF IFS reforecasts

- (20 years: 1997-2017)
- Outflow of WCB: **Negative bias** over North Atlantic

and East Pacific, **positive bias** over south Atlantic

- Similar forecast skill for inflow, ascent and outflow phase of WCB
- Forecast skill up to **day 7-10** with relatively more skill in
- Pacific region compared to Atlantic/European
- Atlantic/European: More skill over major storm track and towards western Europe

### Outlook: bias correction flow dependent forecast skill of WCBS

- → Bias correction of variables used in statistical model
- → Bias correction of conditional probabilities

**Flow dependent** forecast skill outflow (weekly mean probabilities)

