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Outline

* There are two (equally-valid?)
frameworks for interpreting
diabatic PV changes
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* Why might isentropic
trajectories be useful? 0

* An illustration: Cyclone
Vladiana Methven (2015)
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PV modification along

WCB trajectories: ascend
by 600 hPa in 48 hours

Composite evolution
from ERA-Interim
(North Atlantic, DJF)

All trajectories warm
(mean change = +20K)

PV evolution is more
complex: maximum value
occurs mid-ascent
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Madonna et al (JAS, 2014)



VS

* These are identical unless
there is diabatic heating

—©
* Note: isentropic framework
L, fails if statically unstable
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PV modification along

Key Idea: Instead of thinking of PV as being
, think of it as being

D ~ . ~ 9

2=6t+u-\7 with U=u———n

Dt Vol
The PV equation becomes:

EP_PO po
Dt ~ 0dz\6,

E.g. Haynes and Mcintyre (1987)



Can we learn anything from isentropic trajectories that
we don’t already know from air parcel trajectories?

Suggest 3 potential benefits of using isentropic trajectories:

|. More natural physical interpretation
—> retain circulation / mass ideas from adiabatic dynamics

2. More monotonic evolution of PV following trajectories
—> a cleaner attribution of physical processes?

3. Less variation of trajectory positions with resolution

—> a fairer comparison across models?
—> a simpler evaluation of convection schemes!?



PV modification along isentropic trajectories

PV represents the mass-weighted

circulation on an isentropic surface:

Py — C 66
M
- An exact, bulk formula

If adiabatic:

e Mass is conserved because we're
following a material volume

* Circulation is conserved due to
Kelvin’s circulation theorem
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Fig. 4.7 A cylindrical column of air moving adiabatically, conserving potential vorticity.

Holton (2004)



PV modification along isentropic trajectories

If instead we follow

* Circuit remains aligned with
isentropes (by definition)

* Relationship between (P) and C j;ewo
remains (+physical interpretation)

But...No longer following air @ » J

parcels. Two issues: -

* Mass (and circulation) are not
conserved T

Fig. 4.7 A cylindrical column of air moving adiabatically, conserving potential vorticity.

* Conceptually more difficult?
Holton (2004)



PV modification along isentropic trajectories

_ €86 ab) _ _pyM
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[recall isentropic PV equation: p o L~ (92) ]

Two distinct physical mechanisms modifying PV:
|. PV concentration/dilution [diabatic mass flux convergence]



Height

PV dilution/concentration

* A vertical dipole: concentration below
heating, dilution above

* Proportional to P so can’t turn the PV
negative
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isentropes

Distance

Requires heating in the presence of
vertical wind shear

Can act to turn the PV negative

Can be written as I/ - J (the “non-
advective PV flux”)

J is always directed ‘down the
isentropic slope’

On an isentropic surface, there is an
exact dipole: large-scale PV field
does not ‘feel’ this term

Scaling: importance grows at small
scales — dominates on convective
scale



(a) MAT_WCB
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lllustration: Cyclone Vladiana |5
(Sep 2016; NAWDEX IOP3)

e Cluster2
+ Cluster 3

* N96 MetUM simulation of a ‘fairly .
typical’ cyclone (=150 km grid spacing)

* Store hourly model output including all
diabatic and frictional tendencies

Method:

|.  ldentify WCB trajectories in the
standard way (ascend 500 hPa in 48
hours):

2.  Compute isentropic trajectories
backwards from the outflow region:

3. Compute isentropic trajectories
forwards from the inflow region:
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http://www.met.reading.ac.uk/~ben/nawdex/analyses/

air_pressure [hPa]

Evolution of physical properties along trajectories

(c) Cluster 1: Pressure (d) Cluster 1: Temperature (e) Cluster 1: Humidity
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e Strong ascent and drying alon trajectories (net
heatingg=20K) s : ! (

* Both and trajectories still ascend (cf dry
baroclinic wave) but by 200hPa instead of 600hPa



air_pressure [hPa]

Evolution of PV along trajectories

_— (c) Cluster 1: Pressure (f) Cluster 1: Potential Vorticity
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* Typical WCB PV evolution along

Increase whilst below 600 hPa, followed by decrease above

* Monotonic PV evolution along isentropic trajectories:
Gradual decrease along , increase along



PV budget along isentropic trajectories

(e) Cluster 1: ISEN_OUT PV Tendencies
2.0

(f) Cluster 1: ISEN_OUT PV Budget
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* Compute 2 source terms using total 6 (sum of all processes
— but dominated by convective param here)

* PV decrease along

is dominated by dilution term

* Budget closes very well for 36 hour trajectories



PV budget along air parcel trajectories

(c) Cluster 1: MAT_WCB PV Tendencies

- (d) Cluster 1: MAT_WCB PV Budget
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* PV evolution for MAT WCE more complex:
* Initial increase due to PV concentration + circulation changes +
* Later decrease dominated by advection across PV gradient

* Traj mean budget closes well, but huge spread whilst at low levels



Impact of model resolution

N96 (=150 km grid) N320 (=50 km grid)
(e) Cluster 1: ISEN_OUT PV Tendencies - (e) Cluster 1: ISEN_QUT PV Tendencies
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* Much larger spread in circulation tendencies at N320 than
N96 [2>strong horizontal PV dipoles emerging]

* But the mean changes from all 3 terms are almost identical



Aside:What is
diabatic PV!?

Typically think of it as:

the part of the PV field
generated by diabatic
processes during a certain
time period

But this depends on the
framework used:

The PV generated by
diabatic processes is
different if you follow air
parcel trajectories or
Isentropic trajectories

Full PV

.
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Summary

* There are two (equally valid?) frameworks for understanding
diabatic modification of PV
* The air parcel view is used a lot in the literature
* Can we learn anything extra from the isentropic view?

* |dentified 3 potential benefits of the isentropic view
|. A more natural physical interpretation
2. Expect more monotonic changes in PV
—> allowing a cleaner attribution of physical processes?
3. Expect isentropic trajectory positions to vary less with resolution
—> providing a fairer comparison across models?
and/or evaluation of convection parametrisation schemes?



