Warm Conveyor Belts and Cloud Radiative Forcing

WCB – WORKSHOP

ECMWF, March 12th 2020

Hanna Joos and Heini Wernli

IAC, ETH Zürich

University of Dundee, Satellite Receiving Station

Clouds \rightarrow strong impact on radiative budget

Definition of cloud forcing at TOA:

- 1. Shortwave cloud forcing
- 2. Longwave cloud forcing
- 3. Net cloud forcing

→ negative
→ positive

W m⁻²

Clouds → strong impact on radiative budget Clouds → are formed by different weather systems in storm track mainly by extra-tropical cyclones

Clouds → strong impact on radiative budget Clouds → are formed by different weather systems in storm track mainly by extra-tropical cyclones

main cloud producing airstream = Warm Conveyor Belt

Clouds \rightarrow strong impact on radiative budget

Clouds \rightarrow are formed by different weather systems

in storm track mainly by extra-tropical cyclones

main cloud producing airstream = Warm Conveyor Belt

WCB Climatology, 1979 – 2011, ERAInterim

Madonna et al., 2014

WCB Climatology, 1979 – 2011, ERAInterim

Madonna et al., 2014

WCB Climatology, 1979 – 2011, ERAInterim

Madonna et al., 2014

Example of WCB and Cloud Radiative Forcing (CRF)

Example of WCB and Cloud Radiative Forcing (CRF)

Mean TLW, TIW along WCB trajectories

Northern Hemisphere winter (DJF) whole climatology (1979 – 2011)

Joos 2019, Journal of Climate

Mean Cloud Radiative Forcing along WCB trajectories

Joos 2019, Journal of Climate

Mean Cloud Radiative Forcing along WCB trajectories

Joos 2019, Journal of Climate

Zonal vs. poleward moving WCBs

zonal = lat $< 50^{\circ}$ at all times during ascent

poleward = \triangle lat > 30 ° and lat@t=48h > 65°

Zonal vs. poleward moving WCBs

Zonal vs. poleward moving WCBs

iving Station, University of Dundee

University of Dundee, Satellite Receiving Station

total liquid water (TLW) [g m⁻²]

○ / O = position of WCB at 30 January 2009, 12 / 18 UTC

total liquid water (TLW) [g m⁻²] 700 600 500 400 300 200 100 50 15°E 45°W 30°W 15°W 30°E 10 shortwave cloud forcing (SCF) [W m⁻²]

-10 -20 -40 -60 -80 -100 -120 -140 -160 15°E 30°E 45°W 30°W 15°W 0° -180

net cloud forcing (NCF) [W m⁻²]

net cloud forcing (NCF) [W m⁻²]

→Calculation of WCB related NCF at every 6h timestep during whole climatology at every gridpoint → (WCB) →Calculation of time mean WCB related NCF (NCF_{WCB})

→Calculation of NOT WCB related NCF at every 6h timestep during whole climatology at every gridpoint →Calculation of time mean NOT WCB related NCF (NCF_{NOWCB})

CB)

Climatological mean value of NCF can be decomposed into:

$NCF = NCF_{WCB} * f_{WCB} + NCF_{NOWCB} (1 - f_{WCB})$

"WCB – Effect (NCF_{WCB} – NCF_{NOWCB})" 90°N 25 20 45°N 15 10 5 0° -1 -10 45°S -20 -30 -40 90°S -50 90°E 180 180

- "WCB Effect" is to
 - decrease NCF in inflow regions
 - increase NCF in outflow regions
- → increase zonal NCF gradient in winter hemisphere
- → strongly decrease NCF in summer hemisphere

Joos 2019, Journal of Climate

10

6

-5

-8

-10

-15

-20

Decomposition of NCF climatology

Decomposing the climatological signal can help to disentangle the simulated changes in NCF in the extra-tropics in a future climate and to assign it to

 \rightarrow Dynamical changes (WCB ascent locations and frequency)

→ Microphysical changes, represented by the "WCB-effect" (NCF_{WCB} – NCF_{NOWCB})

Summary and Conclusion

- WCBs are frequent flow features
- associated with elongated cloud bands
- associated with high values of
- \rightarrow total condensate
- \rightarrow cloud radiative forcing
- transition from neg. to pos. NCF from WCB start to outflow
- poleward motion essential
- WCB increase zonal NCF gradient in winter
- Decomposition allows investigating effect of changes in cloud properties vs. frequency of WCBs

→ Strong link highlights importance of correct representation of WCBs in climate models for the radiative budget

WCB as Lagrangian flow feature

Warm Conveyor Belts (WCB)

• strongly ascending airstreams in extratropical cyclones (e.g. Harrold, 1973; Carlson, 1980)

• formation of elongated cloud band with liquid, mixed-phase and ice clouds (e.g. Browning, 1986; Madonna, 2014; Joos and Wernli, 2012)

• produces most of the precipitation occurring in an extra- tropical cyclone (e.g. Browning, 1990; Wernli, 1997; Pfahl 2014) Outflow in

p [hPa] 20090130_00 **troposphere** hPa Definition of WCB: 80N 000 1000 Trajectories with ascent 70N 900 > 600 hPa in 48 h 800 1000 Toon 1020 -60N 700 600 50N 500 1010-400 0 ,1010 40N 300 Start in 200 70 **boundary** layer

20W

0E

20E

40E

upper

WCB as Lagrangian flow feature

Warm Conveyor Belts (WCB)

• strongly ascending airstreams in extratropical cyclones (e.g. Harrold, 1973; Carlson, 1980)

• formation of elongated cloud band with liquid, mixed-phase and ice clouds (e.g. Browning, 1986; Madonna, 2014; Joos and Wernli, 2012)

• produces most of the precipitation occurring in an extra- tropical cyclone (e.g. Browning, 1990; Wernli, 1997; Pfahl 2014)

Clouds \rightarrow strong impact on radiative budget

Net cloud forcing (TOA) DJF

(CERES, 2000 - 2010)

