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à Ultimate limit of predictability on larger scales
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Conceptual model for upscale error growth

upscale transition
adjustment-to-balance

convective
instability

baroclinic
instability

Traditional approach/ large body of literature: 
- Error energy spectra + physical interpretation based on turbulent cascade
- Error growth on different scales qualitatively related to individual processes

3-stage model (Zhang et al., 2007)



Process-based, quantitative understanding

Here:
- Focus on process-based, quantitative understanding (e.g., Snyder et al. 2003)
- Potential-vorticity framework of “error” dynamics (Davies and Didone, 2013)



Process-based, quantitative understanding

upscale transition
adjustment-to-balance

convective
instability

baroclinic
instability

Here:
- Focus on process-based, quantitative understanding (e.g., Snyder et al. 2003)
- Potential-vorticity framework of “error” dynamics (Davies and Didone, 2013)

? ? ?



Process-based, quantitative understanding

upscale transition
adjustment-to-balance

convective
instability

baroclinic
instability

Here:
- Focus on process-based, quantitative understanding (e.g., Snyder et al. 2003)
- Potential-vorticity framework of “error” dynamics (Davies and Didone, 2013)

? ? ?



Numerical experiments 
using a stochastic 
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Upscale error growth ICON experiments (Selz 2019)

Ensembles with only initial difference in stochastic Plant-Craig convective scheme

convective mass fluxstandard CAPE closure

Initial error on grid scale
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Upscale error growth ICON experiments (Selz 2019)

Initial error
on grid scale

Ensembles with only initial difference in stochastic Plant-Craig convective scheme
- 5 ensemble members
- 12 different cases of real weather situations (first of each month)
- lead time of 31 days 

40km

Robust results about error growth up to regime scale



Illustration of upscale error growth

PV error on 325 K

day 1

• Errors of the midlatitude tropopause

• “Errors” := differences between two 
error-growth experiments
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PV errors grow in amplitude and scale
à What are the processes that govern the error evolution?



Quantitative 
potential-vorticity 

diagnostic for error growth 



Error growth: Why a PV perspective?

• Potential vorticity (PV) key variable for dynamical meteorology
• PV-error tendency equation (Davies and Didone, 2013) 

• Well established partition-and-attribution concept
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Error growth: Why a PV perspective?

• Potential vorticity (PV) key variable for dynamical meteorology
• PV-error tendency equation (Davies and Didone, 2013) 

• Well established partition-and-attribution concept
• Errors maximize near the tropopause in a PV framework
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Partitioning into four processes (Teubler and Riemer, 2016)
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Dynamics of PV errors

PV error:

Tendency for PV error (following Davies and Didone, 2013): 

with *: error fields
without *: analysis field

Tendency for “error enstrophy” amplification (Baumgart et al. 2018):

decompose (as shown above)
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Results: Processes 
governing error growth



FIG. 8. (a) Partitioning of the mean enstrophy-error tendency into the contributions from
the individual processes, (b) partitioning of the mean nonconservative enstrophy-error
tendency into the contributions from the individual parameterization schemes, and (c) par-
titioning of the mean enstrophy tendency into the contributions from the individual pro-
cesses. The individual error-tendency contributions in (a) and (b) are averaged over the
12 cases and the 10 member pairs within each case, while the individual enstrophy-tendency
contributions in (c) are averaged over the 12 cases and the 5 members within each case. These
averages are shown as thick lines, while the shading next to the lines denotes the (statistical)
standard error for the 12 cases. The time series are smoothed by a running mean over
5 time steps.
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Error tendencies associated with processes

Error enstrophy tendency, averaged from 20N – 80NPVU2 s-1
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Error growth due to non-linear 
Rossby wave dynamics 
(Baumgart et al. 2018)
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after saturation: 
Error dynamics = background dynamics
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Which processes govern initial error growth up from the grid scale?



Growth rates associated with processes
Error enstrophy growth rates, averaged from 20N – 80N
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Error growth experiments vs. operational EC
PV variance tendencies, averaged from 20N – 80N

(Baumgart and Riemer, 2019)

Initial condition uncertainty directly projects 
onto amplification by nonlinear tropopause 
dynamics.



Error growth experiments vs. operational EC
Individual PV-variance tendencies on 325K (day 4.5)

total near tropopause

baroclinic divergent

ET of Karl

PV variance tendencies, averaged from 20N – 80N

(Baumgart and Riemer, 2019)

Initial condition uncertainty directly projects 
onto amplification by nonlinear tropopause 
dynamics.
Locally, however, dominant processes differ.
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Summary: New insight into error growth
Previous

conceptual model
upscale transition

adjustment-to-balance

• Confirmation of multi-stage behavior of upscale error growth

• Novel interpretation of processes: divergent PV-advection

• Initial-condition uncertainty dominates in operational model



Interested in medium-range predictability?
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Abstract
This study provides a process-based perspective on the amplification of forecast
uncertainty and forecast errors in ensemble forecasts. A case from the North Atlantic
Waveguide and Downstream Impact Experiment that exhibits large forecast uncer-
tainty is analysed. Two aspects of the ensemble behaviour are considered: (a) the
mean divergence of the ensemble members, indicating the general amplification of
forecast uncertainty, and (b) the divergence of the best and worst members, indicating
extremes in possible error-growth scenarios. To analyse the amplification of fore-
cast uncertainty, a tendency equation for the ensemble variance of potential vorticity
(PV) is derived and partitioned into the contributions from individual processes.
The amplification of PV variance is, on average for the midlatitudes of the North-
ern Hemisphere, dominated by near-tropopause dynamics. Locally, however, other
processes can dominate the variance amplification, for example, in the region where
tropical storm Karl interacts with the Rossby-wave pattern during extratropical tran-
sition. In this region, the variance amplification is dominated by upper-tropospheric
divergence and tropospheric–deep interaction and is thereby mostly related to (moist
baroclinic) cyclone development. The differences between the error growth in the
best and worst ensemble members can, to a large part, be attributed to differences
in the representation of cut-off evolution around 3 days, which subsequently ampli-
fies substantially in the highly nonlinear region of the Rossby-wave pattern until
5 days. In terms of the processes, the differences in error growth are dominated by
differences in the error growth by near-tropopause dynamics. The approach pre-
sented provides flow-dependent insight into the dynamics of forecast uncertainty and
forecast errors and helps to understand better the different contributions of specific
weather systems to the medium-range amplification of ensemble spread.

K E Y W O R D S
atmospheric dynamics, ensemble forecasts, error growth, numerical weather prediction, potential vortic-
ity, predictability, Rossby waves
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Give special attention to how data (assimilation), model errors 
and stochastic schemes project onto upper-tropospheric 
outflow = most effective trigger of medium-range error and 
uncertainty amplification (by nonlinear tropopause dynamics).
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ABSTRACT

Two diagnostics based on potential vorticity and the envelope of Rossby waves are used to investigate
upscale error growth from a dynamical perspective. The diagnostics are applied to several cases of global,
real-case ensemble simulations, in which the only difference between the ensemble members lies in the
random seed of the stochastic convection scheme. Based on a tendency equation for the enstrophy error, the
relative importance of individual processes to enstrophy-error growth near the tropopause is quantified.After
the enstrophy error is saturated on the synoptic scale, the envelope diagnostic is used to investigate error
growth up to the planetary scale. The diagnostics reveal distinct stages of the error growth: in the first 12 h,
error growth is dominated by differences in the convection scheme. Differences in the upper-tropospheric
divergent wind then project these diabatic errors into the tropopause region (day 0.5–2). The subsequent error
growth (day 2–14.5) is governed by differences in the nonlinear near-tropopause dynamics. A fourth stage of
the error growth is found up to 18 days when the envelope diagnostic indicates error growth from the synoptic
up to the planetary scale. Previous ideas of the multiscale nature of upscale error growth are confirmed in
general. However, a novel interpretation of the governing processes is provided. The insight obtained into the
dynamics of upscale error growth may help to design representations of uncertainty in operational forecast
models and to identify atmospheric conditions that are intrinsically prone to large error amplification.

1. Introduction

Weather prediction has improved significantly in the
past decades (Bauer et al. 2015). Forecast dropouts,
however, do still occur in operational numerical weather
prediction models (Rodwell et al. 2013, 2018). Because
of the multiscale nature of atmospheric dynamics, there
may always be an intrinsic limit of predictability even if
model errors and initial-condition errors occur only on

the smallest resolved scale (Lorenz 1969). Small-scale
errors associated with moist processes grow much faster
than errors on the synoptic scale and saturate already
after about one day (Hohenegger and Schär 2007). Be-
cause of this scale dependence, small-scale errors can
initiate a multistage sequence of upscale error growth
and thereby affect the forecast skill on much larger
scales (e.g., Zhang et al. 2003, 2007; Selz and Craig
2015b; Judt 2018).
Based on an idealized moist baroclinic wave simula-

tion, Zhang et al. (2007) derived a conceptual three-
stage model for upscale error growth. A similar upscale
error-growth behavior could also be found in realistic
weather events (Selz and Craig 2015b; Judt 2018). In the
first stage, errors grow quickly especially in regions of
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ABSTRACT

Synoptic-scale error growth near the tropopause is investigated from a process-based perspective. Fol-
lowing previous work, a potential vorticity (PV) error tendency equation is derived and partitioned into
individual contributions to yield insight into the processes governing error growth near the tropopause.
Importantly, we focus here on the further amplification of preexisting errors and not on the origin of errors.
The individual contributions to error growth are quantified in a case study of a 6-day forecast. In this case,
localized mesoscale error maxima have formed by forecast day 2. These maxima organize into a wavelike
pattern and reach the Rossby wave scale around forecast day 6. Error growth occurs most prominently within
the Atlantic and Pacific Rossby wave patterns. In our PV framework, the error growth is dominated by the
contribution of upper-level, near-tropopause PV anomalies (near-tropopause dynamics). Significant contri-
butions from upper-tropospheric divergent flow (prominently associated with latent heat release below) and
lower-tropospheric anomalies [tropospheric-deep (i.e., baroclinic) interaction] are associated with a mis-
representation of the surface cyclone development in the forecast. These contributions are, in general, of
smaller importance to error growth than near-tropopause dynamics. This result indicates that the mesoscale
errors generated near the tropopause do not primarily project on differences in the subsequent baroclinic
growth, but instead directly project on the tropopause evolution and amplify because of differences in the
nonlinear Rossby wave dynamics.

1. Introduction

Numerical weather prediction has improved re-
markably over the last decades (e.g., Bauer et al. 2015).
Occasionally, however, very poor medium-range fore-
casts do still occur (Rodwell et al. 2013). Forecast er-
rors arise due to errors in the initial conditions and due
to model deficiencies (e.g., Palmer and Hagedorn
2006). After 1–2 forecast days, localized errors may
form that start to affect the synoptic-scale flow (e.g.,
Davies and Didone 2013; Martínez-Alvarado et al.

2016). Subsequently, these errors further amplify and
propagate downstream (e.g., Langland et al. 2002;
Anwender et al. 2008; Pantillon et al. 2013).
The focus of this study is on the amplification of existing

errors, as illustrated inFig. 1.At forecast day 2, a localized
PV error is, in our case, generated in the Atlantic ridge
(Fig. 1a). Within the next day, significant error amplifi-
cation occurs, and the localized error evolves into a
wavelike pattern at forecast day 3 (Fig. 1b). This study
aims to understand such error growth by quantifying the
processes governing the error amplification, rather than
identifying the initial source of the error growth. Gaining
deeper insight into the dynamics of error growth, and thus
into the atmospheric conditions that exhibit high or low
intrinsic predictability (e.g., Melhauser and Zhang 2012),
can be expected to improve the future interpretation of
the forecast uncertainty observed in ensemble forecast
systems.
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