

The importance of warm conveyor belts for (upscale) error growth

M. Baumgart^{1*}, M. Riemer¹, P. Ghinassi¹, V. Wirth¹, F. Teubler¹, T. Selz², and G.C. Craig²

Institut für Physik der Atmosphäre, Johannes Gutenberg-Universität Mainz, Germany

 now at EWE Trading GmbH Bremen, Germany

Meteorologisches Institut München, Ludwig-Maximilians-Universität München, Germany

Upscale error growth

Rapid growth of unavoidable small-scale errors → Ultimate limit of predictability on larger scales

Upscale error growth

Rapid growth of unavoidable small-scale errors → Ultimate limit of predictability on larger scales

"Butterfly effect"

Conceptual model for upscale error growth

Traditional approach/ large body of literature:

- Error energy spectra + physical interpretation based on turbulent cascade
- Error growth on different scales qualitatively related to individual processes

3-stage model (Zhang et al., 2007)

Process-based, quantitative understanding

Here:

- Focus on process-based, quantitative understanding (e.g., Snyder et al. 2003)
- Potential-vorticity framework of "error" dynamics (Davies and Didone, 2013)

Process-based, quantitative understanding

Here:

- Focus on process-based, quantitative understanding (e.g., Snyder et al. 2003)
- Potential-vorticity framework of "error" dynamics (Davies and Didone, 2013)

$\begin{tabular}{|c|c|} \hline \begin{tabular}{c|c|c|} \hline \begin{tabular}{c|c|c|} \hline \begin{tabular}{c|c|c|} \hline \begin{tabular}{c|c|c|} \hline \begin{tabular}{c|c|c|} \hline \begin{tabular}{c|c|} \hline \begin{tabular}{c$

Here:

- Focus on process-b ed, quantitative understanding (e.g., Snyder et al. 2003)
- Potential-vorticity fragework of "error" dynamics (Davies and Didone, 2013)

Numerical experiments using a stochastic convection scheme

Ensembles with only initial difference in stochastic Plant-Craig convective scheme

Initial error on grid scale

Ensembles with only initial difference in stochastic Plant-Craig convective scheme

Ensembles with only initial difference in stochastic Plant-Craig convective scheme

- 5 ensemble members
- 12 different cases of real weather situations (first of each month)
- lead time of 31 days

Robust results about error growth up to regime scale

- Errors of the midlatitude tropopause
- "Errors" := differences between two error-growth experiments

PV errors grow in amplitude and scale

PV errors grow in amplitude and scale

 \rightarrow What are the processes that govern the error evolution?

Quantitative potential-vorticity diagnostic for error growth

Error growth: Why a PV perspective?

- Potential vorticity (PV) key variable for dynamical meteorology
- PV-error tendency equation (Davies and Didone, 2013)
- Well established partition-and-attribution concept

Error growth: Why a PV perspective?

- Potential vorticity (PV) key variable for dynamical meteorology
- PV-error tendency equation (Davies and Didone, 2013)
- Well established partition-and-attribution concept

Error growth: Why a PV perspective?

- Potential vorticity (PV) key variable for dynamical meteorology
- PV-error tendency equation (Davies and Didone, 2013)
- Well established partition-and-attribution concept
- Errors maximize near the tropopause in a PV framework

Partitioning into four processes (Teubler and Riemer, 2016)

Partitioning into four processes (Teubler and Riemer, 2016)

Dynamics of PV errors

PV error: $PV^* = PV_{\text{forecast}} - PV_{\text{analysis}}$

Tendency for PV error (following Davies and Didone, 2013):

$$\frac{\partial}{\partial t}PV^{*} = \frac{\partial}{\partial t}PV_{\text{forecast}} - \frac{\partial}{\partial t}PV_{\text{analysis}}$$
$$= -\overrightarrow{v^{*}} \cdot \overrightarrow{\nabla}PV - \overrightarrow{v^{*}} \cdot \overrightarrow{\nabla}PV^{*} - \overrightarrow{v} \cdot \overrightarrow{\nabla}PV^{*} + NonCons^{*}$$
with *: error fields

without *: analysis field

Tendency for "error enstrophy" amplification (Baumgart et al. 2018):

$$\frac{\partial}{\partial t} \frac{PV^{*2}}{2} = -PV^* \overrightarrow{v^*} \cdot \overrightarrow{\nabla} PV + \frac{PV^{*2}}{2} \overrightarrow{\nabla} \cdot (\overrightarrow{v} + \overrightarrow{v^*}) + NonCons^*$$

decompose (as shown above)

Results: Processes governing error growth

Growth rates associated with processes

Growth rates associated with processes

Distinct stages of upscale error growth

Error growth dominated by latent heating

Н

Distinct stages of upscale error growth

Distinct stages of upscale error growth

Error growth experiments vs. operational EC

Initial condition uncertainty directly projects onto amplification by nonlinear tropopause dynamics.

Error growth experiments vs. operational ÊĈ

Initial condition uncertainty directly projects onto amplification by nonlinear tropopause dynamics.

Locally, however, dominant processes differ.

Individual PV-variance tendencies on 325K (day 4.5)

Summary: New insight into error growth

• Confirmation of multi-stage behavior of upscale error growth

Summary: New insight into error growth

- Confirmation of multi-stage behavior of upscale error growth
- Novel interpretation of processes: divergent PV-advection

Summary: New insight into error growth

- Confirmation of multi-stage behavior of upscale error growth
- Novel interpretation of processes: divergent PV-advection
- Initial-condition uncertainty dominates in operational model

Interested in medium-range predictability?

Give special attention to how data (assimilation), model errors and stochastic schemes project onto <u>upper-tropospheric</u> <u>outflow</u> = <u>most effective trigger of medium-range</u> error and uncertainty amplification (by nonlinear tropopause dynamics).

Processes governing the amplification of ensemble spread in a medium-range forecast with large forecast uncertainty