Dynamics and microphysics of snowfall associated with a warm conveyor belt over Korea

J. Gehring¹, A. Oertel², É. Vignon¹, A. Berne¹

Environmental Remote Sensing Laboratory, EPF Lausanne, Switzerland Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland

ECMWF workshop warm conveyor belt 11th March 2020, all over the world

Key findings

The ICE-POP 2018 campaign

• Measurement campaign to support the PyeongChang 2018 Olympic winter games organised by the Korean Meteorological Administration

• Scanning X-band dual-polarisation Doppler radar, profiling W-band Doppler radar, multi-angle snowflake camera

J. Gehring

ECMWF – WCB workshop 2020

Precipitation events

- Campaign from **15 Nov 2017** to **18 Mar 2018**
- **Dry winter** season with few precipitation events: 61% of DJF climatology
- 28 Feb 2018 event: 62% of DJF 2018 precipitation and 29% over the campaign

J. Gehring

ECMWF – WCB workshop 2020

Case study

Key findings

- Prominent PV streamer associated with a surface low pressure
- Intensification of the extratropical cyclone
- Strong integrated vapour transport (above 1000 kg m⁻¹ s⁻¹)
- System passes over the south of the Korean peninsula

J. Gehring

• Strong ascent over PyeongChang

- Strong ascent over PyeongChang
- Liquid water content (LWC) increases drastically in the ascent of the WCB

Goal: investigate the impact of the **warm conveyor belt** (WCB) on the observed **microphysics** of this intense precipitation event

Which microphysical processes were involved?
How did the flow conditions in the WCB influence the observed microphysics?

- Production of supercooled liquid water (SLW) during the ascent
- Above 700 hPa, liquid water content (LWC) decreases to the benefit of cloud ice

Case study

Radar variables

Mean Doppler velocity = mean of the distribution of Doppler velocities Spectral width (SW) = standard deviation of the distribution of Doppler velocities

Embedded convection, riming and aggregation: 06 to 08 UTC

• Z_{H}^{\dagger} and $Z_{DR}^{\dagger} \rightarrow$ vapour deposition

Embedded convection, riming and aggregation: 06 to 08 UTC

- Z_{H}^{\dagger} and $Z_{DR}^{\dagger} \rightarrow$ vapour deposition
- Z_{H} and Z_{DR} \downarrow \rightarrow aggregation

Embedded convection, riming and aggregation: 06 to 08 UTC

- Z_{H}^{\dagger} and Z_{DR}^{\dagger} \rightarrow vapour deposition
- Z_{H} and Z_{DR} \rightarrow aggregation
- Turbulence enhances aggregation

J. Gehring

Embedded convection, riming and aggregation: 06 to 08 UTC

Aggregation and riming: snowflake camera 06 to 08 UTC

Small particles 26% Columnar crystals 1% Planar crystals 4%

Classification based on MASC images: Praz et al. 2017

- Presence of large rimed aggregates
- Majority of aggregates followed by small particles and graupel

Case study

Key findings

Conceptual model

J. Gehring

ECMWF – WCB workshop 2020

10/11

intense snowfall

11/11

Key findings

1) Which microphysical processes were involved?

- Vapour deposition dominated above 5000 m a.s.l.
- Aggregation and riming interplayed below 5000 m a.s.l.

2) How did the flow conditions in the WCB influence the observed microphysics?

- Production of **SLW** during the strong ascent \rightarrow **riming**
- Updrafts and **turbulence** due to wind shear \rightarrow aggregation \int

Perspective

Do WCBs strengthen the case for additional observations in future? Yes, additional field campaigns are needed to further constrain and evaluate the coupling between large-scale dynamical processes and microphysics in models

Manuscript in discussion in ACP: https://doi.org/10.5194/acp-2019-1173

Thank you for your attention!

J. Gehring

ECMWF – WCB workshop 2020