

Young Investigator Group VH-NG-1243: "Sub-seasonal PREdictAbility: understanding the role of Diabatic OUTflow" (SPREADOUT)

The role of warm conveyor belts in the life cycle of Atlantic-European weather regimes

Christian M. Grams - Large-scale Dynamics and Predictability Group

Acknowledgments: Maxi Böttcher, Dominik Büeler, Laura Ferranti, Erica Madonna, Linus Magnusson, Lukas Papritz, Stephan Pfahl, Julian Quinting, Michael Sprenger, Heini Wernli, and others

Institute of Meteorology and Climate Research – Department Troposphere Research

Forecast busts

occasional poor forecasts still occur in modern NWP systems

occasional poor forecasts still occur in modern NWP systems

Onset of European Blocking

ECMWF analysis

PV@315K, wind@315K, and PMSL

 \rightarrow WCB activity amplifies initial condition error and projects it on the large-scale extratropical circulation

Grams, Magnusson, and Madonna (2018), QJRMS, doi:10.1002/qj.3353

Forecast busts

WCB error during **EuBL** onset

→ WCB activity amplifies initial condition error and projects it on the large-scale extratropical circulation Grams, Magnusson, and Madonna (2018), QJRMS, doi:10.1002/gj.3353

Grams, M

Forecast busts

WCB error during **EuBL** onset

tra starting & pmsl 20160309_00 ECMWF analysis & tra ending & 2PVU@315K 20160311_00 ensemble

Grams, Magnusson, and Madonna (2018), QJRMS, doi:10.1002/qj.3353

Amplitude

Institute of Meteorology and Climate Research (IMK-TRO)

Christian M. Grams

cloud-diabatic processes and blocking

10000km

>50% of air mass experiences LHR prior to arriving in blocking anticyclones

Pfahl et al (2015): Nature Geosci, doi:10.1038/ngeo2487.

Why are regimes relevant?

7

winter (DJF)

Relevance of weather regimes

AR frequency during 7 regimes

ftp://ftp.ssec.wisc.edu/pub/mtpw2

Pasquier et al. (2019), GRL, doi:10.1029/2018GL081194

grams@kit.edu

30N

60W

30W

0

30E

301

60W

30W

0

30E

What is the role of warm conveyor belts in the life cycle of Atlantic-European weather regimes?

WR describe multi-day variability of large-scale extratropical circulation over a specific region

- quasi-stationary (continent-size)
- persistent (> 5 days)
- recurrent

(e.g. Reinhold and Pierrehumbert 1983; Vautard, 1990, Molteni et al. 1990, Michelangeli and Vautard, 1995, Ferranti et al. 2015)

Atlantic-European weather regimes

year-round 7 regimes & life-cycle definition

Z500 ERA-Interim reanalysis (1979-2015)

Cyclonic regimes:

- Atlantic trough
- Zonal Regime
- Scandinavian trough

Blocked regimes:

- Atlantic ridge
- European blocking
- Scandinavian blocking
- Greenland blocking

Grams et al. (2017), doi:10.1038/nclimate3338

10

Weather regime life cycles

- Weather regime Index I_{wr} following Michel and Rivière (2011), JAS, <u>doi:10.1175/2011JAS3635.1</u>
- Objective definition of onset, maximum, decay for individual weather regime

WCB activity during WR life cycles

 cyclone, WCB inflow & outflow, and blocking frequency anomalies during weather regime life cycle (Madonna et al. 2014, JCli, Sprenger et al. 2017, BAMS)

Blocking during WR

Blocking frequency anomaly during active (on-dc) weather regime life cycles (Schwierz et al., 2004)

-0.38 -0.34 -0.3 -0.26 -0.22 -0.18 -0.14 -0.1 -0.06 -0.02 0.02 0.06 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.38

Black contours: DJF mean frequency (contours every 0.02). Shading: anomaly during active weather regime life cycle (onset to decay).

WCB outflow during WR

WCB outflow frequency anomaly during active (on-dc) weather regime life cycles (Madonna et al. 2014, Sprenger et al. 2017)

Black contours: DJF mean frequency (contours every 0.02). Shading: anomaly during active weather regime life cycle (onset to decay).

cyclonic

blocked

Chicken and egg problem

$\mathsf{Blocking} \leftrightarrow \mathsf{WCB}$

15

Lagged composites at EuBL onset

16

All blocked regime variants

WCB outflow frequency anomaly at onset of blocked regimes (onset to +2d)

→ WCB activity during onset and maintenance of blocked weather regimes and this is critical for forecast busts

(QJRMS, doi:10.1002/qj.3353)

Black contours: DJF mean f

blocked

17

Shading: anomaly during active weather regime life cycle (onset to decay).

cyclone

WCB outflow

blocking

WCB activity also present during cyclonic regimes !?

WCB outflow frequency anomaly during active (on-dc) weather regime life cycles (Madonna et al. 2014, Sprenger et al. 2017)

Black contours: DJF mean frequency (contours every 0.02). Shading: anomaly during active weather regime life cycle (onset to decay).

WCB outflow at ScTr onset

Christian M. Grams

grams@kit.edu

Institute of Meteorology and Climate Research (IMK-TRO)

WCB outflow

300 hPa zonal wind during WR

300 hPa zonal wind speed anomaly during active (on-dc) weather regime life cycles

Young Investigator Group VH-NG-1243: "Sub-seasonal PREdictAbility: understanding the role of Diabatic OUTflow" (SPREADOUT)

Summary

HELMHOLTZ

RESEARCH FOR GRAND CHALLENGES

- WCB during WR life cycles are a predictability challenge due to upscale error growth
- Diabatic WCB outflow supports onset and maintenance of blocked regimes
- Absence of strong jet allows "accumulation" of outflow air mass

Ongoing work

- Eulerian WCB metric (talk Thu Julian Quinting)
- WR and diabatic outflow in S2S models (poster Dominik Büeler and talk Thu Jan Wandel)

Sensitivity of WCBs on SPPT (poster Moritz Pickl)

Extra Slides

Challenges: Blocking and RWP in S2S models

Subseasonal prediction models underestimate blocking frequency in the Atlantic/European region

- Rossby waves propagate too far eastward
- strong lack of blocking during RWP decay

Slide by **J. F. Quinting** Quinting and Vitart (2019), *GRL*, <u>doi:10.1029/2018GL081381</u>

Forecast opportunity: WR & large-scale extremes

 multiple pathways to regional extreme events via preferred weather regimes

Beerli and Grams (2019), *QJRMS*, <u>doi:10.1002/qj.3653</u>

Stratospheric modulation of WR frequencies

stratosphere provides window of S2S predictability up to 40 days

Beerli and Grams (2019) <u>doi:10.1002/qj.3653</u> Papritz and Grams (2018) <u>10.1002/2017GL076921</u>, Domeisen, Grams, Papritz (2019), *in preparation*

Limited forecast skill in S2S models

2m temperature anomaly 0-30d after weak stratospheric polar vortex

ECMWF extended-range reforecasts

ERA-Interim

Slide by **D. Büeler** with R. Beerli