The role of warm conveyor belts in the life cycle of Atlantic-European weather regimes

Christian M. Grams - Large-scale Dynamics and Predictability Group

Acknowledgments: Maxi Böttcher, Dominik Büeler, Laura Ferranti, Erica Madonna, Linus Magnusson, Lukas Papritz, Stephan Pfahlf, Julian Quinting, Michael Sprenger, Heini Wernli, and others
Forecast busts

occasional poor forecasts still occur in modern NWP systems

+144h Z500 **ACC** - Europe

![Graph showing forecast initial time and model performance over time.](image-url)
Forecast busts

occasional poor forecasts still occur in modern NWP systems

Onset of European Blocking

ECMWF analysis
PV@315K, wind@315K, and PMSL

→ WCB activity amplifies initial condition error and projects it on the large-scale extratropical circulation

Forecast busts

WCB error during EuBL onset

tram starting & pmsl 20160309_00 ECMWF analysis
tram ending & 2PVU@315K 20160311_00

→ WCB activity amplifies initial condition error and projects it on the large-scale extratropical circulation

Grams, Magnusson, and Madonna (2018), QJRMS, doi:10.1002/qj.3353
Forecast busts

WCB error during EuBL onset

Grams, Magnusson, and Madonna (2018), QJRMS, doi:10.1002/qj.3353
cloud-diabatic processes and blocking

>50% of air mass experiences LHR prior to arriving in blocking anticyclones

Why are regimes relevant?

Wind power variability

- Beerli et al. (2017) 10.1002/qj.3158
- Grams et al. (2017) 10.1038/nclimate3338

Modulation of heavy precipitation

- Piaget et al. (2015) 10.1002/qj.2496
- Grams et al. (2014) 10.5194/nhess-14-1691-2014
- Pasquier et al. (2019) 10.1029/2018GL081194

Heat waves

- Quinting and Reeder (2017) 10.1175/MWR-D-17-0165.1

Cold air outbreaks

 plot by L. Papritz
Relevance of weather regimes

What is the role of warm conveyor belts in the life cycle of Atlantic-European weather regimes?

WR describe multi-day variability of large-scale extratropical circulation over a specific region

- quasi-stationary (continent-size)
- persistent (> 5 days)
- recurrent

(e.g. Reinhold and Pierrehumbert 1983; Vautard, 1990, Molteni et al. 1990, Michelangeli and Vautard, 1995, Ferranti et al. 2015)
Atlantic-European weather regimes

- year-round 7 regimes & life-cycle definition
- Z500 ERA-Interim reanalysis (1979-2015)

Cyclonic regimes:
- Atlantic trough
- Zonal Regime
- Scandinavian trough

Blocked regimes:
- Atlantic ridge
- European blocking
- Scandinavian blocking
- Greenland blocking

Grams et al. (2017), doi:10.1038/nclimate3338
Weather regime life cycles

- Weather regime Index I_{wr} following Michel and Rivière (2011), JAS, doi:10.1175/2011JAS3635.1
- Objective definition of onset, maximum, decay for individual weather regime
WCB activity during WR life cycles

- cyclone, **WCB inflow & outflow**, and **blocking** frequency anomalies during weather regime life cycle

 (Madonna et al. 2014, JCLI, Sprenger et al. 2017, BAMS)
Blocking during WR

Blocking frequency anomaly during active (on-dc) weather regime life cycles
(Schwierz et al., 2004)

Black contours: DJF mean frequency (contours every 0.02).
Shading: anomaly during active weather regime life cycle (onset to decay).
WCB outflow during WR

WCB outflow frequency anomaly during active (on-dc) weather regime life cycles (Madonna et al. 2014, Sprenger et al. 2017)

Black contours: DJF mean frequency (contours every 0.02). Shading: anomaly during active weather regime life cycle (onset to decay).
Chicken and egg problem

Blocking \leftrightarrow WCB

\rightarrow Lagged composites in period around onset

\begin{itemize}
 \item WCB inflow
 \item WCB outflow
 \item cyclone L
 \item blocking H
\end{itemize}
Lagged composites at EuBL onset

→ WCB activity supports onset and maintenance of European blocking

WCB inflow
-4d to -2d

WCB outflow
-2d to onset

blocking
onset to +2d

cyclones
-2d to onset

cyclone
L

blocking
H
All blocked regime variants

WCB outflow frequency anomaly at onset of blocked regimes (onset to +2d)

Black contours: DJF mean frequency (contours every 0.03).
Shading: anomaly during active weather regime life cycle (onset to decay).

<table>
<thead>
<tr>
<th>Region</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>9.7%</td>
</tr>
<tr>
<td>EuBL</td>
<td>10.9%</td>
</tr>
<tr>
<td>ScBL</td>
<td>6.5%</td>
</tr>
<tr>
<td>GL</td>
<td>11.7%</td>
</tr>
</tbody>
</table>

→ WCB activity during onset and maintenance of blocked weather regimes

and this is critical for forecast busts

(QJRMS, doi:10.1002/qj.3353)
WCB activity also present during cyclonic regimes!?

WCB outflow frequency anomaly during active (on-dc) weather regime life cycles (Madonna et al. 2014, Sprenger et al. 2017)

Black contours: DJF mean frequency (contours every 0.02).
Shading: anomaly during active weather regime life cycle (onset to decay).
WCB outflow at ScTr onset

- lags wrt. onset

Scandinavian Trough

Z500 ScTr

-4d to -2d

-2d to onset

onset to +2d

+2d to +4d

+4d to +6d

less frequent

WCB outflow

more frequent
300hPa zonal wind at ScTr onset

- lags wrt. onset

• 6d to -4d
• -4d to -2d
• -2d to onset

Scandinavian Trough

onset to +2d
• +2d to +4d
• +4d to +6d

300 hPa wind speed anomaly

-25 -23 -21 -19 -17 -15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15 17 19 21 23 25 [0-1]
WCB outflow at EuBL onset

• lags wrt. onset

European blocking

Z500 EuBL

-4d to -2d

-2d to onset

onset to +2d

+2d to +4d

+4d to +6d

[0-1]

less frequent

WCB outflow

more frequent
300hPa zonal wind at EuBL onset

- lags wrt. **onset**

-6d to -4d

-4d to -2d

-2d to **onset**

onset to +2d

+2d to +4d

+4d to +6d

European blocking

![300hPa wind speed anomaly](image)
300 hPa zonal wind during WR

300 hPa zonal wind speed anomaly during active (on-dc) weather regime life cycles

→ strong jet during cyclonic regimes hinders accumulation of WCB outflow air

(see also Riboldi et al. 2018, MWR, doi:10.1175/MWR-D-17-0219.1)
Summary

- WCB during WR life cycles are a predictability challenge due to upscale error growth
- Diabatic WCB outflow supports onset and maintenance of blocked regimes
- Absence of strong jet allows “accumulation” of outflow air mass

Ongoing work

- Eulerian WCB metric (talk Thu Julian Quinting)
- WR and diabatic outflow in S2S models (poster Dominik Büeler and talk Thu Jan Wandel)
- Sensitivity of WCBs on SPPT (poster Moritz Pickl)
Extra Slides
Challenges: Blocking and RWP in S2S models

- Subseasonal prediction models underestimate blocking frequency in the Atlantic/European region

 - Rossby waves propagate too far eastward
 - Strong lack of blocking during RWP decay

Slide by J. F. Quinting
Forecast opportunity: WR & large-scale extremes

- multiple pathways to regional extreme events via preferred weather regimes

Stratospheric modulation of WR frequencies

frequency in **strong** / **neutral** / **weak**
stratospheric conditions

frequency following weak stratospheric polar
vortex events (SSWs)

stratosphere provides window of S2S predictability up to 40 days

Limited forecast skill in S2S models

2m temperature anomaly 0-30d after weak stratospheric polar vortex

ECMWF extended-range reforecasts

ERA-Interim

A cooperation with aspo ETH Zürich

Slide by D. Büeler with R. Beerli