

Diabatic processes in the Warm Conveyor Belt of the Stalactite Cyclone

Sensitivity to two deep convection schemes of the global Météo-France model ARPEGE

Gwendal RIVIERE* and Meryl WIMMER[†]

*Laboratoire de Météorologie Dynamique, Paris †Centre National de Recherches Météorologiques, Toulouse

P. Arbogast, J.-M. Piriou, J. Delanoë, Q. Cazenave, J. Pelon, C. Labadie

Workshop WCB, ECMWF, 11 March 2020

Stalactite Cyclone / IOP 6 of NAWDEX

MODIS, Nasa Worldview Application

The model: ARPEGE-EPS (cy41.op1)

NWP:

- Resolution : 10km on France, 20km on Islande (TL798 C2.4)
- Level : 90 from 14m to 50km (1hPa)
- Time step : 514,3s
- Initial Condition : ARPEGE analysis of the 01/10/2016 at 12h UTC

Outputs :

- Resolution : 0,5°
- Time step : 15min
- Heating and PV tendencies

Deep convection scheme in ARPEGE-EPS

Bougeault, 1985 (B85)

- Mass-Flux scheme
- Closure : moisture

Used in high-res oper run

Piriou et al, 2007 (PCMT)

- Mass-Flux scheme
- Closure : CAPE
- Microphysic and transport schemes
- Strong entrainment
- → Used in climate version

Shallow convection : KFB (Bechtold et al. 2001) // PMMC (Pergaud et al. 2009)

Influence of these two deep convection schemes on the Stalactite Cyclone WCB

Research questions

- Along the flight track, in particular in the WCB region, what are the differences in PV and wind between the two runs with two distinct convection schemes ?
- Which scheme leads to a more skillful forecast when compared with NAWDEX observations ?
- What are the differences between the two convection scheme in the upper level ridge building ?

Warm Conveyor Belt trajectories crossing Flight F7

Trajectories : -24h / +24h

WCB : -300hPa in 24h for every 24h in 48h of trajectory + P_0 >850hPa

Link between PV (contours) and wind (shadings)

Link between PV (contours) and wind (shadings)

Method to compare model outputs to radar observations

Wind speed: comparison with radar observations

Wind speed: comparison with radar observations

Wind speed: comparison with radar observations

Heating along WCB trajectories

Time evolution of the heating along WCBs

Vertical profile of the heating rate and PV tendency averaged over WCB trajectories during the 24h preceding the flight

More trajectories below the heating, DPV/Dt>0

Flight time

-> many trajectories in the DPV/Dt < 0 part 15

Separation anticyclonic/cyclonic trajectories

Mean direction during 3h -> to the left : cyclonic -> to the right : anticyclonic

Heating budget for anticyclonic trajectories above 315K

Heating in ice phase from parametrization with B85

Ridge Building

Conclusions

Conclusions

Outlook

Short-term: (article)

- Improve heating and PV budget
- Generalize the results to all WCBs: computation of WCB trajectories from warm sector.
- Interpretation of the differences between the two schemes

Long-term:

- Confirmation on other flights (see poster)
- Use other convection schemes (new PCMT, Tiedke)

Thank you for your attention !