

Sensitivity of Diabatic Outflow of Warm Conveyor Belts on Ensemble Configuration

Moritz Pickl¹ (moritz.pickl@kit.edu), Simon Lang² and Christian M. Grams¹

¹Institute of Meteorology and Climate Research (IMK-TRO), Department Troposphere Research, Karlsruhe Institute of Technology, Karlsruhe, Germany ²European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, United Kingdom

Background and Motivation

Forecast uncertainty related to WCBs

WCBs introduce forecast uncertainty ...

Research questions and Approach

Research questions

- Large parametrization tendencies in vicinity of WCBs due to cloud-condensational processes lead to
- by translating small-scale errors to the large scale, where they grow along the wave guide and propagate downstream (Grams, 2018)
- Implementation with the second sec

Representation of forecast uncertainty in the IFS

- Initial condition uncertainty: Combination of Ensemble Data Assimilation (EDA) and Singular Vectors (SV) to generate perturbations of the initial state
- Model uncertainty: Stochastic physics pertubation tendencies
 Fig. 1: Schemation of initial condition (SPPT) scheme adds random factors to the net parametrization physics and the tendencies to generate model perturbations (Leutbecher and Palmer, 2008)

Stochastic physics perturbation tendencies (SPPT)

- Net tendencies of physical parametrizations are multiplied with a 2D random number $r \in [-1,1]$
- r varies on 3 spatio-temporal correlation scales (500km and 6h, 1000km and 3d, 2000km and 30d)
- Stochastic perturbation scales with the magnitude of parametrization tendencies

Fig. 1: Schematic of ensembe prediction systems, consisting of *initial condition perturbations, perturbed model physics* and the *ensemble forecast*

er, 2008) to a $r \in [-1, +1]$ $\mu \in [0,1]$ frequencies for the second state of a vertical temperature tendency profile obtained by parametrizations (black line) and its perturbation

with a random number r (blue line). Source: www.ecmwf.int

introduction of strong perturbations by the SPPT-scheme

- \rightarrow Are WCBs and their diabatic outflow sensitive to the SPPT-scheme?
- \rightarrow Do these sensitivities depend on model resolution and the setup for trajectory calulation?

Experimental design

NWP-simulations of a weather regime transition case with the ensemble prediction system (EPS) of the Integrated Forecasting System (IFS) with 51 members at TCO 639 (18 km) and TCO 399 (36 km)

Operational setup (CTRL)

3 experiment setups:

Experiment with disabled model uncertainties (no-SPPT)
 Experiment with disabled initial condition perturbations (no-INI)

Post-processing

- Lagrangian detection of WCB-air streams in all members of the ensemble forecast using LAGRANTO (Sprenger and Wernli, 2015)
- Calculation of 48-h forward trajectories starting at an equidistant grid (every 100km) below 800 hPa for different spatial (1.0°, 0.5°, 0.25°) and temporal (6h, 3h, 1h) model output resolutions
- Filtering trajectories which ascend at least 550 hPa during 48h, tracing of Θ , Θ_e , PV and Q along their path and gridding trajectories onto 2D-fields to calculate WCB-probabilities in the ensemble

WCB-sensitivities on SPPT in a case study

Role of model resolution and LAGRANTO setup

Case overview (Grams et al., 2018)

- Forecast bust initialized on 2016-03-07 00 UTC with very low ACC-values in Europe
- Wrongly represented WCB over the North Atlantic at early lead time (48-96 h) led to a wrong depiction of the large-scale flow pattern
- Figs. 3-5 show a later situation (WCB starting at lead time 108 h)

Spatial structure of SPPT-influence (Fig. 5)

- The differences between WCB-outflow of CTRL and no-SPPT are mostly positive, indicating that more diabatic outflow is present when SPPT is active
- The largest differences of WCB outflow between CTRL and no-SPPT are mostly located close to the wave guide. The different positions of the ensemble-mean 2-PVU contours show an effect of SPPT on the Rossby-wave pattern

Systematic effects (Figs. 6)

- Calculation of net diabatic heating, minimum outflow pressure and ascent speed of all trajectories over the North Atlantic in the forecast for all ensemble members for the three experiments (1.0° spatial and 6h temporal resolution)
- Trajectories are heated stronger and ascent higher

Fig. 3: Analyzed 48h WCB-trajectories and SLP contours on March 11th 12 UTC and WCB-outflow and 2 PVU at 315K on March 13th 12 UTC, 2016

- WCB-quantities are calculated for different model resolutions and spatial and temporal model output in the CTRL experiment
- Stronger latent heating, lower outflow pressure and faster ascent rates for higher temporal and spatial resolutions
- Trajectory time stepping has largest effect, followed by grid spacing of model output. Smallest effects can be seen for native model resolution

www.kit.edu

Fig. 7: Probability density functions of the quantities latent heating rate (a), minimum outflow pressure (b) and main ascent period (c) of all WCB-trajectories over the North Atlantic in the forecast for all ensemble members for different model resolutions (TCO639, TCO 399) and spatial (1.0°, 0.5° and 0.25°) and temporal (6h, 3h, 1h) data output

Conclusions and Outlook

- The SPPT-scheme tends to increase the number of trajectories fulfilling the WCB-criterion and increases the latent heating, the ascent speed and the outflow height of WCBs
 - Stochastic perturbations produce a non-zero-mean response, probably due to non-linearities in WCB-dynamics (e.g. Tompkins and Berner, 2008)
- WCB-related quantities are strongly sensitive to the setup of trajectory calculation, especially the time stepping and the grid spacing of the model output

and faster when SPPT is active

- → stochastic zero-mean perturbations lead to a non-zero-mean response
- Due to the very low spread in no-INI, the probability densitiy functions reflect only one scenario and are therefore not representative

Fig. 6: Probability density functions of the quantities latent heating rate (a), minimum outflow pressure (b) and main ascent period (c) of all WCB-trajectories over the North Atlantic in the forecast for all ensemble members for the three experiments CTRL, no-SPPT and no-INI.

- → Compromise between computational cost and representation of processes is necessary
- Systematic investigation of sensitivity of WCB-outflow on SPPT with experiments globally over a longer time period (~2 months)

References

Ferranti, Corti and Janousek, 2015: Flow-dependent verification of the ECMWF ensemble over the Euro-Atlantic sector. QJRMS
Grams, Magnusson, and Madonna, 2018: An Atmospheric Dynamics' perspective on midlatitude forecast error. *QJRMS*Joos and Forbes, 2016: Impact of different IFS microphysics on a warm conveyor belt and the downstream flow evolution. *QJRMS*Leutbecher and Palmer, 2008: Ensemble forecasting. *Journal of Comp. Phys.*Sprenger and Wernli, 2015: The LAGRANTO Lagrangian analysis tool - Version 2.0. *Geosci. Mod. Dev.*Tompkins and Berner, 2008: A stochastic convective approach to account for model uncertainty due to unresolved humidity variability. *Journal of Geoph. Res.*

Acknowledgments

This work is funded by the Helmholtz Association as part of the Young Investigator Group SPREADOUT (grant VH-NG-1243). We are greatful to Dominik Büeler, Julian Quinting and Jan Wandel for discussions

KIT – The Research University in the Helmholtz Association