

The ICON model: actual state and first steps towards a new dynamical core based on the Discontinuous Galerkin method

ECMWF Annual Seminar 14-18 September 2020

Michael Baldauf, Sebastian Borchert, Florian Prill, Günther Zängl (DWD)

Outline

- The ICON dyn. core, recent developments: deep atmosphere
- Discontinuous Galerkin scheme as a possible alternative dynamical core for ICON - results from a 2D toy model
 - Introduction
 - The HEVI approach (short break)
 - DG on the sphere
- First steps towards an ICON-prototype based on DG: BRIDGE

Properties of the dynamical core of ICON

- uses non-hydrostatic, compressible Euler eqns.
- exactly mass- and tracer mass-conserving
- true 2nd order scheme (as long as parameterizations are switched off)
- stable in very steep mountainous regions
- useable both for global and regional applications
- computationally very efficient and scales well on current parallel computers (Zängl et al. (2015) QJRMS, Zängl (2012) MWR, Baldauf, Reinert, Zängl (2014) QJRMS)

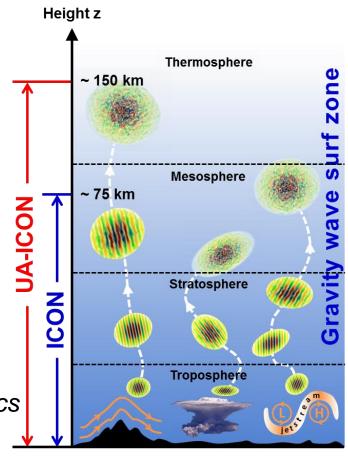
Some numerical details:

- staggering: horizontal: icosahedral, triangle C-grid, vertical: Lorenz-grid
- mixed finite-volume / finite-difference
- predictor-corrector time-integration, horiz. explicit vertic. implicit (HEVI)
- several damping mechanisms are used (off-centering, divergence damping, horizontal Smagorinsky diffusion and 4th order artificial diffusion, ...)

Modification of ICON* for the deep atmosphere: Motivation

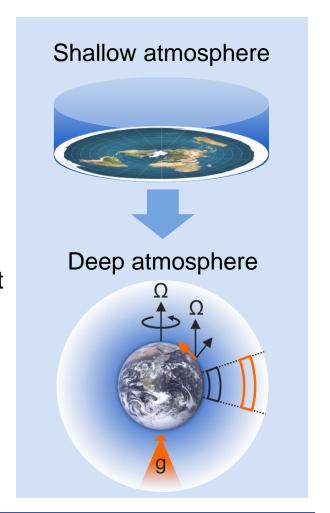
S. Borchert

- Work is part of DFG research group:
 Multiscale Dynamics of Gravity Waves (MS-GWaves**)
- Collaboration with colleagues from Max Planck Institute for Meteorology (Hamburg)
- Goal: simulation of large part of gravity wave life cycle, from sources in Troposphere to wave breaking in upper Mesosphere lower Thermosphere
- Implementation of upper-atmosphere physics package (by MPI-M)
- Implementation of deep-atmosphere dynamics (by DWD)

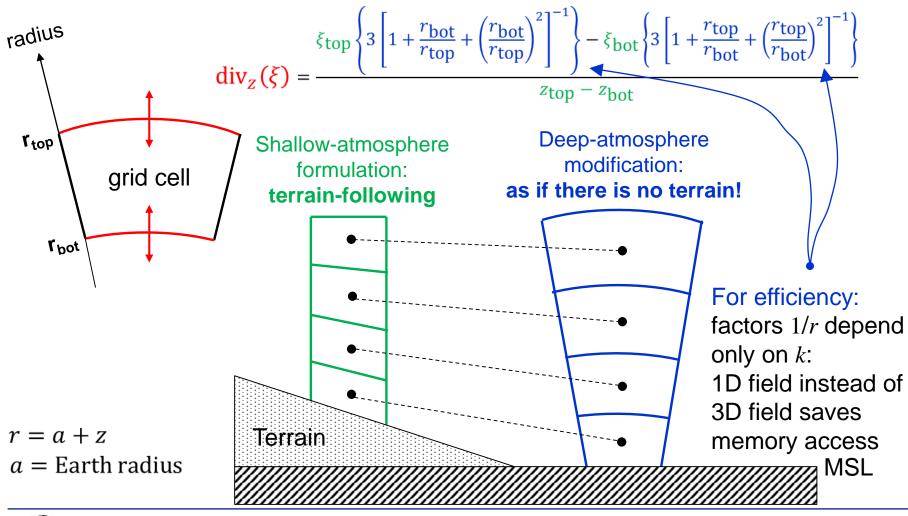


Modification of ICON for the deep atmosphere: Overview

- Shallow atmosphere*
 - Standard configuration in ICON
 - In particular, replace prefactors $1/r \rightarrow 1/a$
- Deep-atmosphere modifications
 - Abandon shallow-atmosphere approximation
 - Increase of grid cell extension with height
 - Gravitational field strength |g|
 decreases with height
 - Abandon traditional approximation
 - Coriolis acceleration due to Ω_h
 - take all metric terms in advection

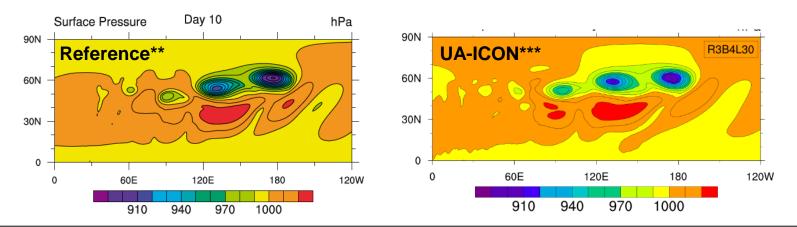


Example: vertical divergence of some flux ξ



Modification of ICON for the deep atmosphere: Test II

- Jablonowski-Williamson baroclinic instability test case* in its extension for deep-atmosphere dynamical cores**
- Focus on hydrostatic balance and baroclinic waves as important atmospheric synoptic-scale features
- No analytic solution available: model intercomparison



→ If you are interested in the upper-atmosphere extension of ICON:
*** Borchert, Zhou, Baldauf, Schmidt, Zängl, Reinert (2019) The upper-atmosphere extension of the ICON general circulation model (version ua-icon-1.0), GMD

Time table (at DWD)

Jan. 2015: ICON (13km) replaces GME as a global forecast model

Jan. 2016: ICON-EU-nest (6.5km) replaces COSMO-EU (7km)

Jan. 2021: ICON-D2 (2.1km) replaces the convection-permitting

COSMO-D2 (2.2km)

similar replacements at COSMO partner countries until ~2023

Current, ongoing dynamical core developments:

Replace continuity equation for total mass by those for dry mass

→ this has a lot of implications in dyn. core itself, in physics-dyn.-coupling, in boundary conditions, ...

(D. Reinert (DWD), ... KIT)

Discontinuous Galerkin solver as a possible alternative dynamical core for ICON

- Results from a 2D toy model

Michael Baldauf (DWD)

MetStröm

Discontinuous Galerkin (DG) methods in a nutshell (I)

$$\frac{\partial q^{(k)}}{\partial t} + \nabla \cdot \mathbf{f}^{(k)}(q) = S^{(k)}(q), \qquad k = 1, ..., K$$

1.) weak formulation $\int_{\Omega_j} dx \ v(\mathbf{x}) \cdot \dots$

e.g. Cockburn, Shu (1989) Math. Comput. Cockburn et al. (1989) JCP Hesthaven, Warburton (2008)

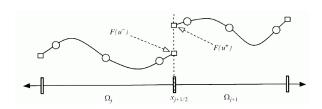
$$\Rightarrow \quad \frac{d}{dt} \int_{\Omega_i} q^{(k)} v \, dV + \int_{\partial \Omega_i} f^{(k)num,\perp} v \, da - \int_{\Omega_i} \mathbf{f}^{(k)} \cdot \nabla v \, dV = \int_{\Omega_i} S^{(k)} v \, dV$$

2.) Finite-element ingredient

$$q^{(k)}(x,t) = \sum_{l=0}^{p} q_{j,l}^{(k)}(t) p_l(x - x_j)$$

Galerkin-idea: identify $v \equiv p_l$

Modal base: orthogonal functions e.g. Legendre-Polynomials Nodal base: interpolation (Lagrange) polynomials



From Nair et al. (2011) in ,Numerical techniques for global atm. models'

Discontinuous Galerkin (DG) methods in a nutshell (II)

Weak formulation

$$\frac{d}{dt} \int_{\Omega_j} q^{(k)} v \, dV + \int_{\partial \Omega_j} f^{(k)num,\perp} v \, da - \int_{\Omega_j} \mathbf{f}^{(k)} \cdot \nabla v \, dV = \int_{\Omega_j} S^{(k)} v \, dV$$

3.) Finite-volume ingredient:

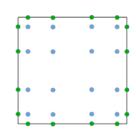
Replace physical flux by a numerical flux in the surface integral

→ couple two neighbouring cells

Often used: simple Lax-Friedrichs flux

$$\mathbf{f}(q) \to f^{num,\perp}(q^+, q^-) = \frac{1}{2} \left(\mathbf{f}(q^+) + \mathbf{f}(q^-) \right) \cdot \mathbf{n} - \frac{\alpha}{2} (q^+ - q^-)$$

- 4.) Gaussian quadrature for the volume and surface integrals
 - \rightarrow ODE-system for $q^{(k)}_{jl}(t)$



5.) Use a time-integration scheme (Runge-Kutta, ...)

- local conservation of every prognostic variable
- any order of approximation (convergence) possible
- flexible application on unstructured grids (also dynamic adaptation is possible, h-/p-adaptivity)
- very good scalability on massively-parallel computers (compact data transfer and no extensive halos)
- separation between (analytical) equations and numerical implementation
- boundary conditions are easily prescribed (fluxes or values in weak form)
 coupling with other subcomponents (ocean model, ...) should be easy
- higher accuracy helps to **avoid several awkward approaches** of standard 2nd order schemes: staggered grids (on triangles/hexagons, vertically heavily stretched), numerical hydrostatic balancing, grid imprints by pentagon points or along cubed sphere lines, ...
- unified numerical treatment of all flux terms and source terms
- explicit schemes are relatively easy to build and are quite well understood

- high computational costs due to
 - (apparently) small Courant numbers → small time steps
 - higher number of degrees of freedom
 - variables ,live both on interior and on edge quadrature points
 - this holds additionally for parabolic problems (diffusion)
 - HEVI approach leads to band diagonal matrices with many bands
- well-balancing (hydrostatic, perhaps also geostrophic?) in Euler equations is an issue (can be solved!)
- basically ,only an A-grid-method, however, the ,spurious pressure mode is very selectively damped!

Current status:

we are still relatively far away from a full-fledged meteorological model, only a **toy model for 2D problems exists** with:

- explicit time integration DG-RK (with Runge-Kutta schemes) or horizontally explicit-vertically implicit (DG-HEVI) (with IMEX-Runge-Kutta)
- ,local DG' (LDG) option for PDEs with higher spatial derivatives (e.g. diffusion)
- use of a triangle grid (also on the sphere) is optional

Some examples on the next slides ...

2D Euler-equations (non-hydrostatic, compressible) with diffusion (=Navier-Stokes eqns.) with terrain-following coordinates (x, z) on a plane

$$\frac{\partial}{\partial t}\sqrt{G'}\rho' + \frac{\partial}{\partial x}\sqrt{G'}M^{*x} + \frac{\partial}{\partial z'}\sqrt{G'}\left(\frac{\partial z'}{\partial x}M^{*x} + \frac{\partial z'}{\partial z}M^{*z}\right) = 0,$$

$$\frac{\partial}{\partial t}\sqrt{G'}M^{*x} + \frac{\partial}{\partial x}\sqrt{G'}T^{*x*x} + \frac{\partial}{\partial z'}\sqrt{G'}\left(\frac{\partial z'}{\partial x}T^{*x*x} + \frac{\partial z'}{\partial z}T^{*x*z}\right) = 0,$$

$$\frac{\partial}{\partial t}\sqrt{G'}M^{*z} + \frac{\partial}{\partial x}\sqrt{G'}T^{*z*x} + \frac{\partial}{\partial z'}\sqrt{G'}\left(\frac{\partial z'}{\partial x}T^{*z*x} + \frac{\partial z'}{\partial z}T^{*z*z}\right) = -\sqrt{G'}g\rho' - \sqrt{G'}\frac{M^{*z}}{\tau},$$

$$\frac{\partial}{\partial t}\sqrt{G'}\eta' + \frac{\partial}{\partial x}\sqrt{G'}H^{*x} + \frac{\partial}{\partial z'}\sqrt{G'}\left(\frac{\partial z'}{\partial x}H^{*x} + \frac{\partial z'}{\partial z}H^{*z}\right) = 0,$$

$$\eta = \rho\theta$$

$$p = p_{ref}\left(\frac{\eta R_d}{p_{ref}}\right)^{cp/cv},$$

Momentum fluxes:

$$T^{*x*x} = \frac{M^{*x}M^{*x}}{\rho} + p' - 2K\rho \left(\frac{\partial v^{*x}}{\partial x} + \frac{\partial z'}{\partial x}\frac{\partial v^{*x}}{\partial z'}\right),$$

$$T^{*x*z} \equiv T^{*z*x} = \frac{M^{*x}M^{*z}}{\rho} - K\rho \left(\frac{\partial z'}{\partial z}\frac{\partial v^{*x}}{\partial z'} + \frac{\partial v^{*z}}{\partial x} + \frac{\partial z'}{\partial x}\frac{\partial v^{*z}}{\partial z'}\right),$$

$$T^{*z*z} = \frac{M^{*z}M^{*z}}{\rho} + p' - 2K\rho \frac{\partial z'}{\partial z}\frac{\partial v^{*z}}{\partial z'},$$

Heat fluxes:

$$H^{*x} = \frac{\eta M^{*x}}{\rho} - K\rho \left(\frac{\partial \Theta}{\partial x} + \frac{\partial z'}{\partial x} \frac{\partial \Theta}{\partial z'} \right),$$

$$H^{*z} = \frac{\eta M^{*z}}{\rho} - K\rho \frac{\partial z'}{\partial z} \frac{\partial \Theta}{\partial z'}.$$

strong conservation form with terrain following coordinates but cartesian base vectors (Wedi, Smolarkiewicz (2003) JCP, Schuster et al. (2014) MetZ, appendix, for the sphere)

Horizontally explicit - vertically implicit (HEVI)-scheme with DG

Motivation: get rid of the **strong time step restriction** by vertical sound wave expansion in **flat grid cells** (in particular near the ground)

$$\frac{\partial q^{(s)}}{\partial t} + \nabla \cdot \mathbf{f}_{slow}^{(s)} + \nabla \cdot \mathbf{f}_{fast}^{(s)} = S_{slow}^{(s)} + S_{fast}^{(s)} \qquad \qquad \mathbf{f}_{fast}^{(s)} = f_{z,fast}^{(s)} \mathbf{e}_{z}$$
 explicit implicit implicit implicit

$$\mathbf{f}_{fast}^{(s)} = f_{z,fast}^{(s)} \mathbf{e}_z$$
$$f_{z,fast}^{(s)} = \sum_{s'} H^{ss'} q^{(s')}$$

- Use of IMEX-Runge-Kutta (SDIRK) schemes: SSP3(3,3,2), SSP3(4,3,3) (Pareschi, Russo (2005) JSC)
- The implicit part leads to several band diagonal matrices
 - → here a direct solver is used (expensive!)

References:

Giraldo et al. (2010) SIAM JSC: propose a HEVI semi-implicit scheme Bao, Klöfkorn, Nair (2015) MWR: use of an iterative solver for HEVI-DG Blaise et al. (2016) IJNMF: use of IMEX-RK schemes in HEVI-DG Abdi et al. (2017) arXiv: use of multi-step or multi-stage IMEX for HEVI-DG

IMEX-Runge-Kutta

- general stability function for the Dahlquist problem is known
- general order conditions are known
- described by double Butcher tableaus
 e.g. SSP3(3,3,2) by Pareschi, Russo (2005) JSC:

practically SDIRK schemes are preferred

Lock, Wood, Weller (2014) QJRMS

Pareschi, Russo (2005) JSC: SSP3(3,3,2), SSP3(4,3,3)

Giraldo et al. (2012) Siam JSC: ARK2(2,3,2)

Kang, Giraldo, Bui-Thanh (2020) JCP: IMEX-RK in hybridiz. DG

2D linear advection equation – DG-HEVI

maximum Courant numbers: for a modal basis with Legendre polynomials of degree p (i.e. convergence order p+1)

RK-IMEX scheme	time order	p=0	p=1	p=2	p=3
RK1-IMEX	1	1.0	0	0	0
Trap2	2	1.0	0.198	0.081	
SSP3(3,3,2)	2	1.25	0.378	0.199	
ARK2(2,3,2)	2		0.219	0.110	
SSP3(4,3,3)	3		0.256	0.131	0.079

more specific: $U_0^{slow}=1$, $V_0^{slow}=0$, $U_0^{fast}=0$, $V_0^{fast}=10$, dx=dy=1

Compare: explicit DG p=3 /4th order RK: CFL=0.136

A problem with the Euler equations ...

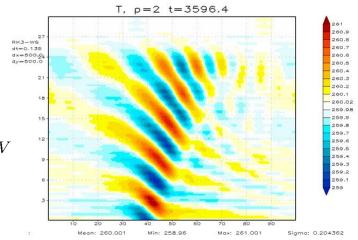
Approximate hydrostatic balance

pressure gradient (→flux div.) ≅ buoyancy term (→ source term)
is crucial for the Euler equations in the atmosphere.

However, the source term integral contains base polynomials themselves, whereas the flux div. term integral uses *derivatives* of base polynomials:

$$\frac{d}{dt} \int_{\Omega_j} q^{(k)} v \, dV + \int_{\partial \Omega_j} f^{(k)num,\perp} v \, da - \int_{\Omega_j} \mathbf{f}^{(k)} \cdot \nabla v \, dV = \int_{\Omega_j} S^{(k)} v \, dV$$

→ no proper balance possible.

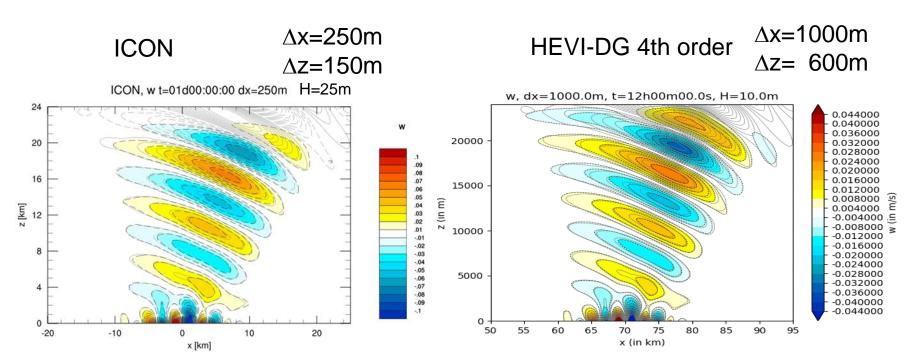


... and its solution:

Blaise et al. (2016) IJNMF, Orgis et al. (2017) JCP: use vertically a reduced base (one polynomial degree less in a modal base) for the calculation of the source term.

This leads to an additional filtering procedure in the implicit solver.

Flow over mountain with the HEVI-solver



colors and black dotted lines; model

But don't take the computing times too serious!

grey lines: analytic solution (Baldauf, 2008, COSMO-Newsl.)

Computing time on 160 processors (Cray XC40 Broadwell)

for t_{total} =24h, 26min

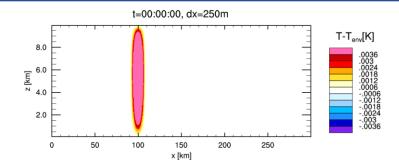
→on 1 processor: 69h

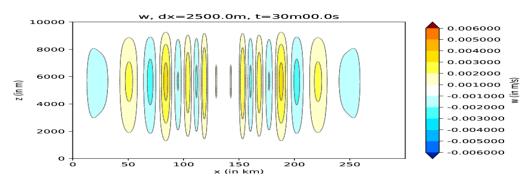
Computing time on 1 processor: (Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz)

for t_{total}=24h, 4th order DG: 160h

Linear gravity/sound wave expansion in a channel

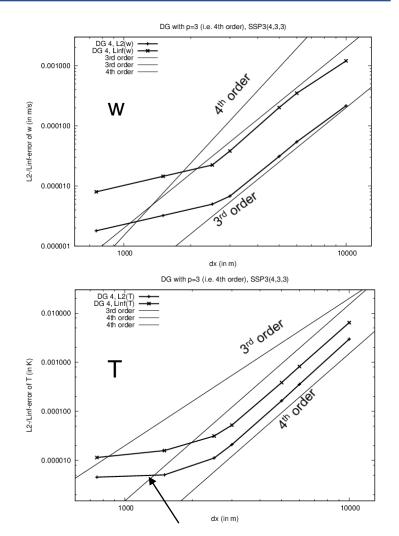
setup similar to Skamarock, Klemp (1994) MWR





colors: simulation with p=3/SSP3(4,3,3) dx=2500m, dz=1250m

black lines: analytic solution for compressible, non-hydrostatic Euler eqns. (Baldauf, Brdar (2013) QJRMS)



Nonlinear effect?

General treatment of diffusion in DG

Simple replacement of a flux f(q) by $f(q, \partial q/\partial x)$, where $\partial q/\partial x$ is directly calculated from q, does not work.

Instead (Bassi, Rebay, 1997, and similar for ,local DG'):

- define a new variable $d = \partial q/\partial x$
- treat q as a flux and apply the DG formalism to this equation, too.
- Replace $f(q) \rightarrow f(q) + f_{\text{diffus}}(q,d)$ Remark: the numerical flux for f_{diffus} does not need additional numerical diffusion.

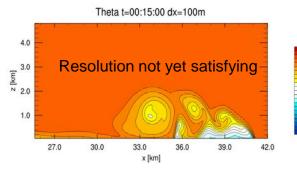
3D-diffusion in terrain-following coordinates

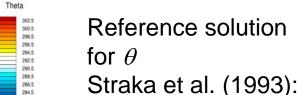
New developments:

- In terrain-following coord, there are several choices for d possible, here: covariant derivatives of the prognostic variables
- If diffusion is treated vertically implicit (i.e. HEVI), too
 - → extension of the band diagonal matrix necessary
- Currently: ,HEVI-diffusion' is done in every sound time-step
 - → expensive! Appropriate time-integration necessary.

ICON

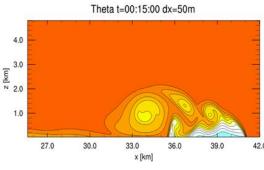
Falling bubble test case

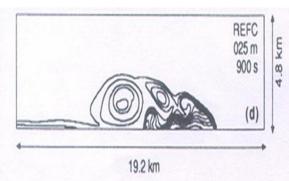




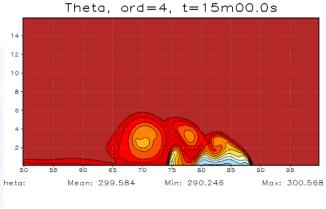
dy = 400.0

DG-HEVI





But don't take the computing times too serious!



Computing time on 40 processors (Cray XC40 Broadwell)

dx=dz=50m: 5min

→ on 1 processor: 3h30min

Computing time on 1 processor (Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz) dx=dz=400m, 4th order DG

Euler HEVI, diffusion explicit: 1h40min

Euler + diffusion in HEVI: 3h50min

300.5

297.5

294.5

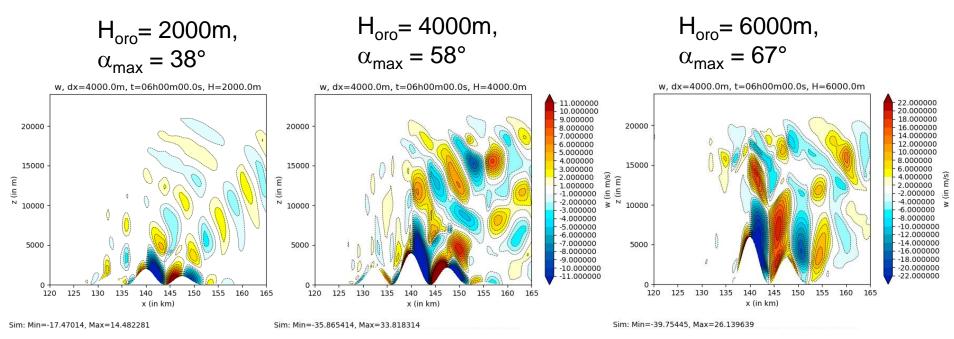
287.5 286.5

285.5 284.5

283.5

Flow over mountain with steep slopes and vertical grid stretching

Schaer et al. (2002) MWR, test case 5b: U_0 =10m/s, N=0.01 1/s, but a=10km



 Δx =4 km; vertical grid stretching: Δz_{min} ~46m, Δz_{max} ~736m, $z_{lowest QP}$ ~10.3m

HEVI-DG simulation (4th order) remains stable even for steeper slopes! to avoid instability by strong gravity wave breaking, vertically implicit ,3D' diffusion with K=100m²/s was used

Efficiency of the implicit solver

The vertically implicit problem leads to the solution of J block tridiagonal LES, i.e J band diagonal matrices with KSMN rows and column and 2SMN diagonals both above and below the main diagonal

J = number of grid cells in the horizontal direction

K = number of grid cells in the vertical direction

S = number of variables

M = number of horizontal base functions

N = number of vertical base functions

- Use of a direct band diagonal solver:
 - LU decomposition: complexity $O(JK(SMN)^2)$
 - → at most useable with low order DG efficiency gain: only once every several dozen time steps
 - Solution of the LES: one matrix-vector-mult. per column in every RKsubstep: complexity O(JKSMN)
 - compare with a tridiagonal solver in our ,standard' FD/FV codes: O(JM KN)
- Use of an iterative solver (Bao, Klöfkorn, Nair (2015) MWR)

How to bring DG on the sphere

annoying fact: the sphere doesn't allow a single coordinate system without singularities → leads to pole problem in lat-lon coordinates

- → usual remedies:
- Yin-Yang grid (often with quadrilateral cells)
- cubed-sphere grid (often with quadrilateral cells)
- *Icosahedron* with hexagonal (e.g. MPAS) or **triangle** cells (e.g. ICON)

additionally: allow higher order (i.e. >2nd) discretization

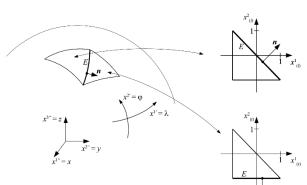
- → use **local coordinates** for every (triangle) grid cell,
 - = locally rotated gnomonial projection (*Läuter, Giraldo, ... (2008) JCP*)
- → geometry is treated exactly!

Idea here: fields components are expressed in local base vectors, too

- → no pole problem at all
- > transform fluxes between neighbouring cells
- → use covariant formulation of the equations

Shallow water equations, covariant formulation

$$\begin{split} \frac{\partial \sqrt{g}H}{\partial t} + \frac{\partial}{\partial x^{i}} \sqrt{g}M^{i} &= 0 \\ \frac{\partial \sqrt{g}M^{i}}{\partial t} + \frac{\partial}{\partial x^{j}} \sqrt{g}T^{ij} &= \sqrt{g} \left(-g_{grav}Hg^{ij}\frac{\partial h_{B}}{\partial x^{j}} + F_{Cor}^{i} - \Gamma_{jk}^{i}T^{jk} \right) \\ T^{ij} &= \frac{M^{i}M^{j}}{H} + \frac{1}{2}g^{ij}g_{grav}H^{2}, \quad M^{i} = Hv^{i} \end{split}$$



 x^{1} , x^{2} are arbitrary local coordinates on each triangle.

This description is valid on arbitrary 2D manifolds.

→ extension to an ellipsoid is easy and without additional costs.

Formulate DG discretization only in these local coordinates

→ ,standard DG formulation useable: nodal base, Runge-Kutta time integr., ... however: Transformation of fluxes on the edges between neighbouring cells:

$$f_{(r \to l)}^{i} = \frac{\partial x_{(l)}^{i}}{\partial x_{(r)}^{j}} f_{(r)}^{j}, \qquad f_{(l \to r)}^{i} = \frac{\partial x_{(r)}^{i}}{\partial x_{(l)}^{j}} f_{(l)}^{j}$$

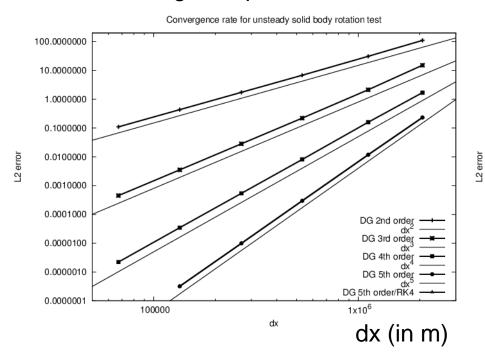
Baldauf, M. (2020): Discontinuous Galerkin solver for the shallow-water equations in covariant form on the sphere and the ellipsoid, J. Comp. Phys. 410

Unsteady solid body rotation

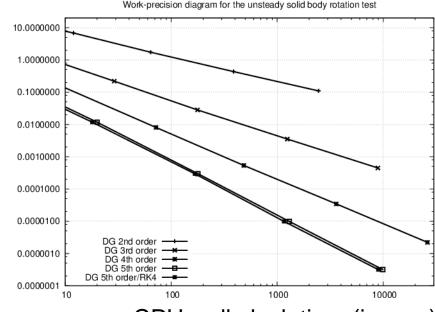
Läuter et al. (2005) JCP

Exact analytic solution available! \rightarrow calculate error measures L₂ (=RMSE)

Convergence plot:



Work-precision diagram:



CPU wall clock time (in sec.)

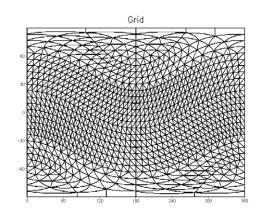
Barotropic instability test

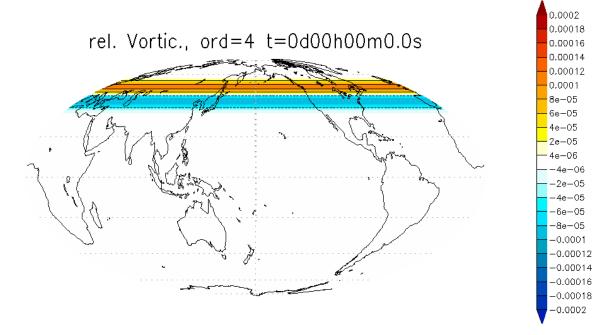
Galewsky et al. (2004)

4th order DG scheme

without additional diffusion $dx\sim67$ km, dt=15 sec.

simple triangle grid on the sphere dx ~ 500km:





relVort:

GrADS: COLA/IGES

Mean: 7.53016e-07 Min: -9.8335e-05 Max: 0.000112421

Sigma: 2

2019-09-03-17:03

0.00016 0.00014

Barotropic instability test Galewsky et al. (2004)

4th order DG scheme without additional diffusion

 $dx\sim67$ km, dt=15 sec.

FMS-SWM (Geophys. Fl. Dyn. Lab.) without additional diffusion $dx\sim60 \text{ km } (T341), dt=30 \text{ sec.}$

60

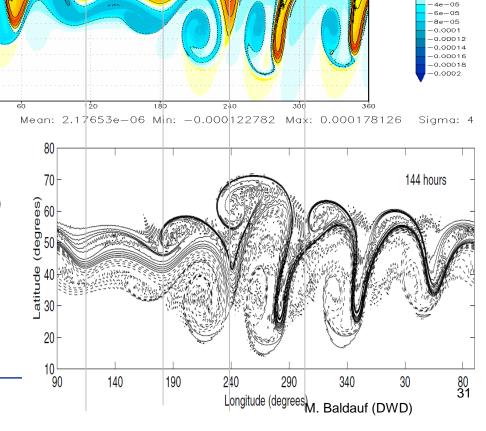
30

20

relVort:

GrADS: COLA/IGES

Fig. 4 from Galewsky et al. (2004)



relative vorticity

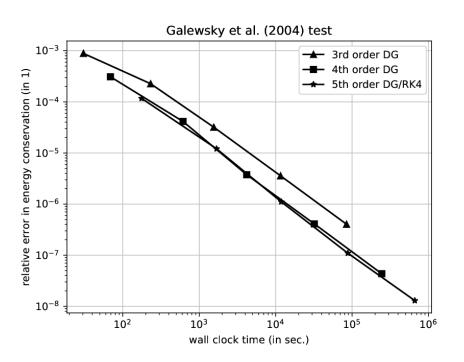
rel. Vortic., ord=4 t=6d00h00m0.0s

Barotropic instability test

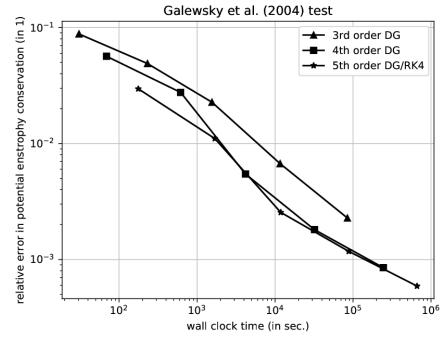
Galewsky et al. (2004)

Work-precision-diagrams

rel. error in energy conservation



rel. error in pot. enstrophy conservation



Barotropic instability test Galewsky et al. (2004)

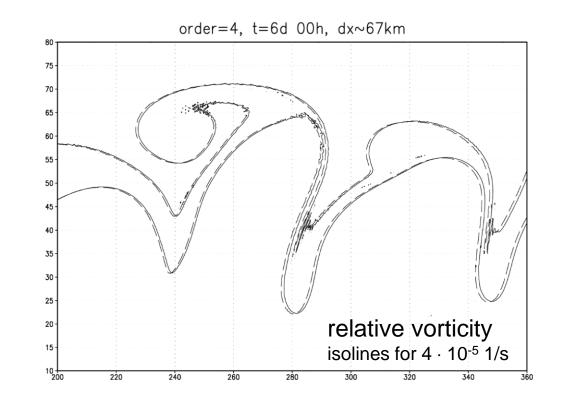
Comparison between the sphere and the ellipsoid

4th order DG scheme without additional diffusion

without additional diffusion dx~67 km, dt=15 sec.

solid line: sphere R = 6371.22 km

dashed line: ellipsoid a = 6378.137 km c = 6356.752 km \Rightarrow numer. excentr. = 0.082



- → ellipsoidal solution shows westward phase shift of ~1° after 6 days
- → is in qualitative agreement with *Bénard (2015) QJRMS*

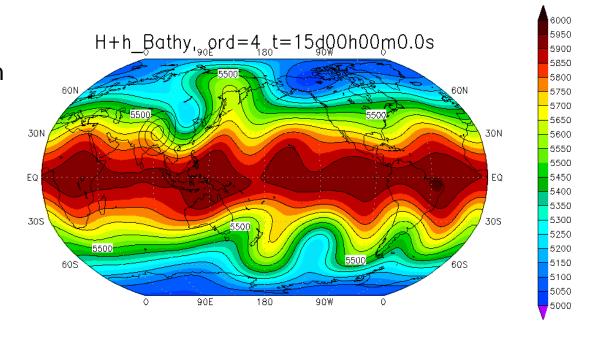
Flow over mountain

Test case 5 of Williamson et al. (1992)

init.: solid body rotation velocity field (u_{max} =20 m/s) in geostrophic balance with H; mountain height 2000m

4th order DG scheme

without additional diffusion dx~67 km, dt=15 sec.



H+h bathy:

Mean: 5501.36

Min: 5032.07

Max: 5953.86

Sigma: 3

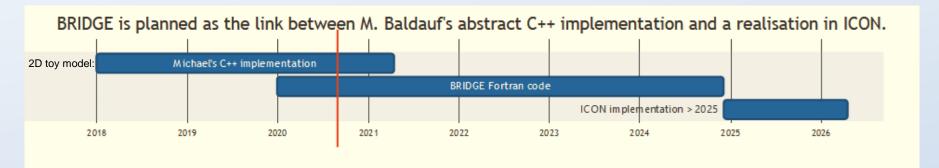
GrADS: COLA/IGES 2019-10-10-10:01

"BRIDGE" - Basic 3D Test Code

3D test code with as little infrastructure overhead as possible

Florian Prill (DWD)

- Discontinuous Galerkin discretizations
- Test platform for DSLs and new infrastructure libraries
- Benchmark "dwarfs"



DG Working Group - It's just starting ...

BRIDGE is application-oriented research – and it's extra work.

M. Baldauf • F. Prill • D. Reinert • S. Borchert • ...

https://commons.wikimedia.org/w/index.php?curid=60689515

Overall Design

- Fortran 2003
- MPI parallelization
- Modules and interfaces closely resemble ICON

Example:

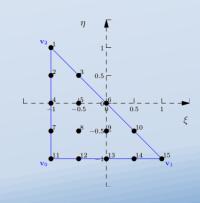
Source tree: parallel_infrastructure, shared, shr_horizontal, ... Data types and objects: wp, t_patch, t_grid_cells, t_var_list, ...

- ICON triangular grid
- Storage layout: MPI parallel domain decomposition, arrays of 2D triangulations are nproma-blocked

2.5D: Restrict to quadrature points and node sets which are built from 2Dx1D tensor products.

Consequently, restriction to expansions

$$q(r(x^1, x^2), s(x^3), t) = \sum_{l=1}^{M} \sum_{m=1}^{N} Q_{l,m}(t) \phi_l(x^1, x^2) \psi_m(x^3) .$$



Restrictions and Simplifications

- MPI parallelization: no "no-MPI" mode, only worker tasks present (no detached PEs)
- operates on a single domain only
- no "local parent patch"but parent grid may have enlarged halo
- only one precision kind wp
- only rudimentary field meta-data
- no restarting capability
- no refinement of cells in a column
 (eg. small cells at the bottom, coarse at the top)

Modularization, Encapsulation

Libraries

... as little infrastructure overhead as possible:

- Use of supporting libraries like YAXT The communication library YAXT (DKRZ, Hamburg) abstracts the communication on MPI level from the application.
- better separation between scientific code and infrastructure: two auxiliary libraries have been created: libftnbasic and libcbasic.

F2003 object-oriented features

The code uses F2003 objects to a far greater extent than ICON:

- to avoid global variables
- to make the data flow in the model more transparent which variable is touched by whom, and when ...

Vectors (FE coefficients, evaluated shape fct., ...) remain **REAL (wp)** vectors = no derived type abstraction.

The user takes care of the index ordering or the fact if they are global or local, synched or not.

DG and Parameterisations

General principle: spatial transport (advection, sedimentation, diffusion, ...) must be treated in the DG-scheme!

Otherwise we loose conservation.

Box-models (e.g. cloud physics, chemistry/aerosol-packages): are evaluated and deliver tendencies in every quadrature point

→ at the first place no adaptations necessary!

Nevertheless, the ,classical physics/dynamics-coupling questions remain: overall time integration scheme? how to achieve positive definiteness?

Turbulence:

Remark: diffusion needs special treatment in DG (local DG, compact DG, ...) Advantage of local DG: derivatives of fields are directly available for turbulence modeling!

. . .

DG and physics perturbations in ensembles

Some recommendations ...

- ... to keep conservation properties of the DG scheme:
- in the transport terms, only (physical) fluxes should be perturbed.
- in the **source terms**: e.g. moisture var., perturb in a way that $\rho_{dry} + \rho_v + \rho_r + \dots + \rho_g$ is unchanged (while keeping positive def.)

DG and data assimilation

At least adaptations in the forward operators necessary:

- by the modified output grid; better say: to the position of the I/O-grid points (these are probably the quadrature points in the triangle grid)
- different prognostic variables (conserved var.)

Summary

- 2D toy model for
 - explicit DG-RK (unstructured grids, triangle or quadrilateral grid cells) and
 - HEVI DG-IMEX-RK
 - now works for *Euler equations* with *terrain-following coordinates* and optionally with *3D diffusion* (explicit or HEVI): several tests show correct convergence behaviour, well-balancing problems solved, ...
- Efficiency problems with band diagonal matrix solver strongly improved: the whole implicit part (build coeff. matrix, LU decomposition, matrix-vector-mult.) takes ~60% of total run time.
- DG on the sphere on a triangle grid possible by the use of local (rotated gnomonial) coordinates and the covariant formulation of the equations.
 (Baldauf (2020) JCP)
- → With respect to the pure dynamical core (=solver for the Euler equations), no show–stopper occured until now However, total efficiency is still an issue!

Outlook

- Current tasks in the 2D toy model
 - Consolidation of what has been achieved so far: further testing; what are the true limits of the method?

Further **milestones** (for the next years!)

- Development of a 3D prototype, DG-HEVI on the sphere
 BRIDGE (Basic Research for ICON with DG Extension) (start ~mid 2020)
 - Further design decisions: nodal vs. modal?, local DG vs. interior penalty vs. ...?, allow non-conformal grids?, efficient data layout, ...
 - Coupling of tracer advection (mass-consistency)?
 - Develop coupling ideas for parameterizations time-integration, preserve pos. def., ...
- Implementation into ICON (start ~2024)
 - choose optimal convergence order p and grid spacing estimated: $p_{\text{horiz}} \sim 4 \dots 6$, $p_{\text{vert}} \sim 3 \dots 4$ ($p_{\text{time}} \sim 3 \dots 4$) currently I favor: $p_{\text{horiz}} = 4$, $p_{\text{vert}} = 4$, $p_{\text{time}} = 3$

Thank you very much for your attention!

