
CRC 1114

ECMWF Annual Seminar 2020 Reading, September 17, 2020

Seamless integration of hydrostatic, soundproof,
and fully compressible equations

(with application to balanced data assimilation)

Rupert Klein

Mathematik & Informatik, Freie Universität Berlin



Thanks to ...

Ulrich Achatz (Goethe-Universität, Frankfurt, Germany)
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Compressible flow equations

ρt +∇∥ ⋅ (ρu) + (ρw)z = 0

(ρu)t +∇∥ ⋅ (ρu ○u) + (ρwu)z + cpP∇∥π = −fk × ρu

(ρw)t +∇∥ ⋅ (ρu ○w) + (ρww)z + cpPπz = −ρg

Pt +∇∥ ⋅ (Pu) + (Pw)z = 0

π = P γ−1

(P = ρθ)



Asymptotic flow regimes of the atmosphere

ρt +∇∥ ⋅ (ρu) + (ρw)z = 0

(ρu)t +∇∥ ⋅ (ρu ○u) + (ρwu)z + cpP∇∥π = −fk × ρu

(ρw)t +∇∥ ⋅ (ρu ○w) + (ρww)z + cpPπz = −ρg

Pt +∇∥ ⋅ (Pu) + (Pw)z = 0

π = P γ−1

(P = ρθ)

drop terms (roughly speaking) for:

• geostrophic

• hydrostatic

• pseudo-incompressible (soundproof)



Asymptotic flow regimes of the atmosphere

∗ Smolarkiewicz & Dörnbrack, IJ Num. Meth. Fluids, 56 (2007) † M.J.P. Cullen, Acta Numer., 16 (2007)

ρt +∇∥ ⋅ (ρu) + (ρw)z = 0

(ρu)t +∇∥ ⋅ (ρu ○u) + (ρwu)z + cpP∇∥π = −fk × ρu

(ρw)t +∇∥ ⋅ (ρu ○w) + (ρww)z + cpPπz = −ρg

Pt +∇∥ ⋅ (Pu) + (Pw)z = 0

π = P γ−1

(P = ρθ)

Unified numerics – what for?

• “fair” math model comparison∗

• asymptotic consistency†

• balanced data assimilation



Slight change of perspective on advection

(Pχ)t +∇∥ ⋅ (Puχ) + (Pwχ) = 0

(Pχu)t +∇∥ ⋅ (Pu ○ χu) + (Pwχu)z + cpP∇∥π = −fk × Pχu

(Pχw)t +∇∥ ⋅ (Pu ○ χw) + (Pwχw)z + cpPπz = −Pχg

P t +∇∥ ⋅ (Pu) + (Pw)z = 0

π = P γ−1

(ρ = Pχ) (χ = 1/θ)

Change of variables:

P is the central variable for Low-Mach divergence control

System rewritten with Pu, Pw as the “advecting fluxes”



Fast-slow separation

IGW: internal gravity waves

Perturbation entropy

χ(t,x, z) = χ(z) + χ′(t,x, z)

Slow-fast sorting of terms

ρt + ∇∥ ⋅ (Puχ′) + (Pwχ′)z = −Pw dχ
dz

(ρu)t +∇∥ ⋅ (Pu ○ χu) + (Pwχu)z = −P (cp∇∥π + fk × χu)

(ρw)t + ∇∥ ⋅ (Puχw) + (Pwχw)z = −P (cpπz + χg)

Pt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Advection (slow)

= −∇∥ ⋅ (Pu) + (Pw)z .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Sound & IGWs (fast)



Primary (full) and auxiliary variables

Primary variables and equations with evolution of Pv

ρt + ∇∥ ⋅ (Puχ) + (Pwχ)z = 0

(Pχu)t +∇∥ ⋅ (Pu ○ χu) + (Pwχu)z = −(cpP∇∥π + fk × χPu )

(Pχw)t + ∇∥ ⋅ (Puχw) + (Pwχw)z = −(cpPπz + P (χ + χ′)g)

Pt + ∇∥ ⋅ (Pu) + (Pw)z = 0

Auxiliary variables and equations for balanced flux/source calculations

(Pχ′)t +∇∥ ⋅ (Puχ′) + (Pwχ′)z = −Pw
dχ

dz

∂P

∂π
πt = −∇∥ ⋅ (Pu) + (Pw)z .



Decomposition into linear substeps I

∗ Blossey, Durran, J. Comput. Phys., 227 (2008) † K., TCFD, 23 (2009)

Given Pu, Pw ⇒

compressible∗† linear advection of (χ,χu, χw,χ′) & full evolution of (ρ,P )

(Pχ)t + ∇∥ ⋅ (Puχ) + (Pwχ)z = 0

(Pχu)t +∇∥ ⋅ (Pu ○ χu) + (Pwχu)z = −((cpP /χ)∇∥π + fk × Pu )

(Pχw)t + ∇∥ ⋅ (Puχw) + (Pwχw)z = −((cpP /χ)πz + Pg)

P t + ∇∥ ⋅ (Pu) + (Pw)z = 0

(Pχ′)t + ∇∥ ⋅ (Puχ′) + (Pwχ′)z = −Pw dχ
dz

∂P

∂π
πt = −∇∥ ⋅ (Pu) + (Pw)z .



Decomposition into linear substeps II

Given ρ,P ,χ = ρ/P ⇒

“linear” acoustic/inertia-gravity wave system for (Pu, Pw,χ′, π)

ρt + ∇∥ ⋅ (Puχ) + (Pwχ)z = 0

χ(Pu)t +∇∥ ⋅ (Pu ○ χu) + (Pwχu)z = −P cp∇∥π + fk × χPu

χ(Pw)t + ∇∥ ⋅ (Puχw) + (Pwχw)z = −P (cpπz + g(χ + χ′))

Pt + ∇∥ ⋅ (Pu) + (Pw)z = 0

(Pχ′)t + ∇∥ ⋅ (Puχ′) + (Pwχ′)z = −Pw dχ
dz

∂P

∂π
πt = −∇∥ ⋅ (Pu) + (Pw)z .



Decomposition into linear substeps II

The only (VERY WEAK) linearization in the entire scheme

Given ρ,P ,χ = ρ/P ⇒

“linear” acoustic/inertia-gravity wave system for (Pu, Pw,χ′, π)

ρt + ∇∥ ⋅ (Puχ) + (Pwχ)z = 0

χ(Pu)t +∇∥ ⋅ (Pu ○ χu) + (Pwχu)z = −P cp∇∥π + fk × χPu

χ(Pw)t + ∇∥ ⋅ (Puχw) + (Pwχw)z = −P (cpπz + g(χ + χ′))

Pt + ∇∥ ⋅ (Pu) + (Pw)z = 0

(Pχ′)t + ∇∥ ⋅ (Puχ′) + (Pwχ′)z = −Pw dχ
dz

∂P

∂π
πt = −∇∥ ⋅ (Pu) + (Pw)z .



Borrowing from Piotr’s compact notation∗

∗ see, e.g., P.K. Smolarkiewicz and L.G. Margolin, Atmosphere-Ocean Special, 127–157 (1997)

Define

Ψ = (χ,χu, χw,χ′)

and subsume the Euler system (incl. auxiliary variables) as

(PΨ)t +A(Ψ;Pv) = Q(Ψ, P ;π)

Pt +∇ ⋅ (Pv) = 0 . (2 incarnations forP,π)



Borrowing from Piotr’s time stepping ideas∗

∗ see, e.g., Kühnlein, et al., A nonhydrostatic finite-volume formulation of IFS, Geosci. Mod. Dev. Disc., 12 (2019)

Given (Pv)n+1/2, ...

(PΨ)∗ = (PΨ)n + ∆t

2
Q (Ψn, Pn;πn)

(PΨ)∗∗ = A∆t
2nd

(Ψ∗; (Pv)n+1/2)

(PΨ)n+1 = (PΨ)∗∗ + ∆t

2
Q (Ψn+1, Pn+1;πn+1) .

(slow) robust Advection by ∆t bracketed by

(∆t/2)-steps of the implicit trapezoidal rule for the (fast) Ac/IGW-terms



Borrowing from Piotr’s time stepping ideas

∗ Please excuse my language here, Piotr ,

Given (Pv)n+1/2, ...

(PΨ)∗ = (PΨ)n + ∆t

2
Q (Ψn, Pn;πn)

(PΨ)∗∗ = A∆t
2nd

(Ψ∗; (Pv)n+1/2)

(PΨ)n+1 = (PΨ)∗∗ + ∆t

2
Q (Ψn+1, Pn+1;πn+1) .

Remarks
• This is a second-order split∗ scheme, but ...

• ... it is NOT standard Strang-splitting
(1st and last step are first-order only)

• (Pv)n+1/2 remains to be determined



Intermediate time advective fluxes

Desired: second order full time step for P

Pn+1 = Pn −∆t∇ ⋅ (Pv)n+
1
2

implicit midpoint rule!



(Semi-)Implicit midpoint update for P

(∆t/2) Advection step

(PΨ)# = A
∆t
2

1st (Ψn; (Pv)n)

P# = P n − ∆t

2
∇̃ ⋅ (Pv)n .

(∆t/2) backward Euler step for the fast system

(PΨ)n+1
2 = (PΨ)# + ∆t

2
Q (Ψn+1/2, P#;πn+1/2) ,

P n+1
2 = P n − ∆t

2
∇ ⋅ (Pv)n+1

2

linearized or iterated closure via eqn. of state

P n+1
2 = P n + (∂P

∂π
)

#

(πn+1
2 − πn)

• Semi-implicit Euler step for P n+1
2

• Generates advecting fluxes (Pv)n+1
2

• Generates P n+1 via implicit midpoint rule



Summary

P n+1 = P n −∆t∇ ⋅ (Pv)n+1/2 implicit midpoint (slow/fast)

(PΨ)∗ = (PΨ)n + ∆t

2
Q (Ψn, P n;πn) forward Euler (fast)

(PΨ)∗∗ = A∆t
2nd (Ψ∗; (Pv)n+1/2) 2nd order upwind (slow)

(PΨ)n+1 = (PΨ)∗∗ + ∆t

2
Q (Ψn+1, P n+1;πn+1) backward Euler (fast)

Sole linearization (compressible case only):

P n+∗ = P n + (∂P
∂π

)
#

(πn+∗ − πn)



Seamless access to reduced models

Backward Euler for Ac/IGW subsystem

Un+1 = Un −∆t (cpPθ ∇∥π′n+1 − fk ×Un+1)

αhyW
n+1 = αhyW

n −∆t (cpPθ ∂zπ
′n+1 + (g/χ) χ̃n+1)

χ̃n+1 = χ̃n −∆t (dχ
dz

W n+1)

αpi
∂P

∂π
π′
n+1 = αpi

∂P

∂π
π′
n −∆t (∇∥ ⋅Un+1 + ∂zW n+1) .

(U ,W ) = (Pu, Pw)

χ̃ = Pχ′

Switches

αhy ∶ hydrostatic / non-hydrostatic αpi ∶ compressible / pseudo-inc.
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Benacchio, R. K., Mon. Wea. Rev., 147 (2019) ∗ Kadioglu et al., J. Comput. Phys., 227 (2008)
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Figure 1: Density (left) and nodal pressure perturbation (right) in the travelling vortex
case, initial data (top), computed solution at T = 1 s on a grid with 48×48 points (middle)
and 768 × 768 points (bottom).
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Travelling vortex test case∗
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Figure 2: L2 error (left) and L∞ error (right) of computed solution at time T = 1 s
with respect to initial data in the travelling vortex case, density (top), nodal pressure
perturbation (bottom), refinements from 48 × 48 points to and 768 × 768 points.
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Empirical convergence
Top: Density; Bottom: Pressure



Benacchio, K., Mon. Wea. Rev., 147 (2019) ∗ J.M. Straka et al., Int. J. Numer. Meth. Fluids, 17, 1–22 (1993)
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FIG. 3. Potential temperature perturbation at times (top to bottom) t = 0, 300, 600, 900s for the density

current test case at spatial resolution Dx = Dz = 50m, CFLadv = 0.96. Contours in the range [�16.5, �0.5]K

with a 1K contour interval.
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Straka’s gravity current test∗
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FIG. 4. One-dimensional cut at height z = 1200m for the potential temperature perturbation at final time t =

900s in the density current test case run with CFLadv = 0.96. Spatial resolutions Dx = Dz = 400m (black solid),

200m (red dashed), 100m (blue dashed-dotted), 50m (magenta solid, circles), 25m (green solid, crosses).
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Qualitative empirical convergence
Potential temperature



Benacchio, K., Mon. Wea. Rev., 147 (2019) ∗ Skamarock, Klemp, Mon. Wea. Rev., 122 (1994)

Planetary scale internal gravity wave test∗ (∆t = 7 100 s; N∆t = 71)
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FIG. 7. Potential temperature perturbation for the planetary-scale inertia-gravity wave test, Dx = 160km, Dz =

1km, CFLadv = 0.9. Initial data (top left, contours as in Figures 5-6) and computed value at final time T =

480000s in compressible mode (top right), pseudo-incompressible mode (middle left), hydrostatic mode (middle

right). Contours in the range [�0.005,0.005]K with a 0.001K interval. The bottom plots show the difference

between the compressible run and the pseudo-incompressible run (left) and between the compressible run and the

hydrostatic run (right). Contours in the range [�4,6]⇤10�4 K with a 10�4 K interval (left), [�1.5,1.5]⇤10�5 K

with a 3⇤10�6 K interval (right). Negative contours are dashed.
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top left: potential temperature perturbation initial data; top right: compressible solution t = 480 000 s
middle left: pseudo-incompressible solution; middle right: hydrostatic solution

bottom row: differences to compressible solution
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Imbalanced data / semi-implicit time integration

Benacchio et al., Mon. Wea. Rev., 142 (2014)

Rising Bubble test case (δθ = 2 K; [−10, 10] × [0, 10] km; t ∈ {0, 1050} s )
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compressible simulation, δπ = πn+1 − πn blended δπ ∼ 10−7



Balanced initialization for data assimilation

Benacchio et al., Mon. Wea. Rev., 142 (2014)

Rising Bubble test case (δθ = 2 K; [−10, 10] × [0, 10] km; t ∈ {0, 1050} s )
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compressible δπ ∼ 10−4 blended δπ ∼ 10−7

αpi ≡ 1.0 αpi = [0.0,0.733,1.0,1.0, ...]



Balanced initialization for data assimilation

Ray Chew, Sept., 2020

Travelling vortex test
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Improved balance I

Use analytical insights to reset P,π:

1) Low Mach number (M ≪ 1) asymptotic adjustment of P = ρθ

Pcomp = P pi +M2 ∂P

∂π
(π(2)

pi − π(2)
pi ) + h.o.t

2) Optimized match of pressure time levels

π
(2),n+1
pi = 1

2
(π(2),n+1

comp + π(2),n
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Optimized balance I

R. Chew, Feb. 11, 2020

Travelling vortex test
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Optimized balance I

R. Chew, Feb. 11, 2020

Rising bubble, LETKF-based data assimilation
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Ensemble with data assimilation without blending. Quantity is , nodal Exner pressure at output time t = 1000.0s.

w/o blending



Optimized balance I

R. Chew, Feb. 11, 2020

Rising bubble, LETKF-based data assimilation
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Optimized balance II

Hastermann et al., CAMCoS, submitted, Sept. 2020, earlier version: arXiv:1708.03570

Approach to balance accelerated by selective damping for α ∈ (0,1)
(akin to divergence damping)

Symplectic integration for α ∈ {0,1}



Optimized balance II

Hastermann et al., CAMCoS, submitted, Sept. 2020

Stiff-spring double pendulum test

Hε(q, p) = 1
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Summary & Outlook

∗ Arakawa, Konor, Mon. Wea. Rev., 137 (2009)

• “Splitting” of the Euler equations in (almost) linear substeps

• Combination of implicit trapezoidal & implicit midpoint for fast system

• Seamless access to compressible, pseudo-incompressible & hydrostatic models

• Access to QG dynamics ?

• Access to Arakawa & Konor’s unified model ?∗

• Rigorous analysis of the scheme ? ⇒ Gottfried Hastermann

• Multiscale data assimilation ? ⇒ Ray Chew


