

Sea ice rheology and numerical solvers for sea ice dynamics

J.-F. Lemieux, P. Blain, M. Losch, B. Tremblay and M. Plante

ECMWF 2020 annual seminar 15 September 2020

Outline

- Introduction on sea ice dynamics
- The importance of sea ice rheology
- The viscous-plastic (VP) rheology
- Current numerical solvers for sea ice dynamics
- Critics of the VP model and new approaches
- Conclusions

Ice Motion in the Arctic Basin

Data from the International Arctic Buoy Programme (IABP) 1979 - 1998

The IABP is funded by its Participants from 31 Institutions from 10 different countries.

For more information on the IABP, please visit their web page. http://IABP.apl.washington.edu.

Main features of Arctic sea ice drift

Arctic Sea Ice Thickness

Sea ice dynamics

- Strongly impact the local and geophysical distributions of sea ice thickness.
- It is not only velocity that matters but its spatial derivatives (i.e. deformations)
- The formulation of rheology is crucial to properly simulate sea ice dynamics.

Outline

- Introduction on sea ice dynamics
- The importance of sea ice rheology
- The viscous-plastic (VP) rheology
- Current numerical solvers for sea ice dynamics
- Critics of the VP model and new approaches
- Conclusions

What is rheology?

Rheology is the relationship between applied stresses, material properties and the resulting deformations.

Processes/features related to sea ice rheology: deformations

RGPS observations, 24-30 Mar. 2007, ~10km scale, Source: Nasa JPL, Ron Kwok

Processes/features related to sea ice rheology: leads

Processes/features related to sea ice rheology: pressure ridges

Processes/features related to sea ice rheology: ice pressure

Intern pressure and Wind speed field_2018031800_000

Processes/features related to sea ice rheology: ice arches

Dumont et al. 2009

More on the importance of sea ice deformations

- affect the thickness distribution through the formation of ridges and leads
- heat flux through new leads is 1-2 orders of mag higher than over thick ice (Maykut, 1978)
- 25-40% of new ice formation occurs in leads (Kwok, 2006)
- Ridges affect the air-ice and ocean-ice drags

Outline

- Introduction on sea ice dynamics
- The importance of sea ice rheology
- The viscous-plastic (VP) rheology
- Current numerical solvers for sea ice dynamics
- Critics of the VP model and new approaches
- Conclusions

The sea ice momentum equation

$$m\frac{Du}{Dt} = -mf\hat{k} \times u + \tau_a - \tau_w - \tau_b - mg\nabla H_d + \nabla \cdot \sigma$$

- 4 terms are nonlinear
- it is the rheology term that makes the equation so difficult to solve

1D momentum equation

$$\rho h \frac{\partial u}{\partial t} + C_w(u)u - \frac{\partial \sigma(u)}{\partial x} = \tau_a$$

where
$$\sigma = \zeta \dot{\varepsilon} - \frac{P}{2} = \zeta \frac{\partial u}{\partial x} - \frac{P}{2}$$

1D VP rheology

$$\sigma = \zeta \dot{\mathcal{E}} - \frac{P}{2}$$

$$\zeta = \frac{P}{2|\dot{\mathcal{E}}|}$$

$$\sigma = \zeta \, \dot{\varepsilon} - \frac{P}{2}$$

$$\zeta = \min \left(\frac{P}{2 \, |\dot{\varepsilon}|}, \zeta_{\text{max}} \right)$$

Viscous-plastic formulation

$$\sigma_{ij} = 2\eta \dot{\varepsilon}_{ij} + [\zeta - \eta] \dot{\varepsilon}_{kk} \delta_{ij} - P\delta_{ij}/2$$

$$i, j = 1,2$$

$$\zeta = P/2\Delta, \ \eta = \zeta e^{-2} \quad \Delta = \sqrt{f(\varepsilon_{ij}^2)}$$

Hibler, 1979

Outline

- Introduction on sea ice dynamics
- The importance of sea ice rheology
- The viscous-plastic (VP) rheology
- Current numerical solvers for sea ice dynamics
- Critics of the VP model and new approaches
- Conclusions

Time discretization (implicit approach)

$$\rho h \frac{\partial u}{\partial t} + C_w(u)u - \frac{\partial \sigma(u)}{\partial x} = \tau_a$$

We want to solve the eqs at time levels n = 1, 2, 3, ...:

$$0$$
 Δt $2\Delta t$ $3\Delta t$...

$$\rho h \left(\frac{u^n - u^{n-1}}{\Delta t} \right) + C_w(u^n) u^n - \frac{\partial \sigma(u^n)}{\partial x} = \tau_a^n$$

The system of nonlinear equations

$$\rho h \frac{u^n}{\Delta t} + C_w(u^n) u^n - \frac{\partial}{\partial x} \zeta(u^n) \frac{\partial u^n}{\partial x} = \tau_a^n + \rho h \frac{u^{n-1}}{\Delta t} - \frac{1}{2} \frac{\partial P}{\partial x}$$

$$A(u^n)u^n$$

$$A(u)u = b$$

$$\mathbf{F}(\mathbf{u}) = \mathbf{A}(\mathbf{u})\mathbf{u} - \mathbf{b}$$
 (the residual)

Implicit solvers

Picard

do k=1, k_{max}

'solve'
$$\mathbf{A}(\mathbf{u}^{k-1})\mathbf{u}^k = \mathbf{b}$$

stop if
$$\|\mathbf{F}(\mathbf{u}^k)\| < \gamma_{nl} \|\mathbf{F}(\mathbf{u}^0)\|$$

enddo

e.g. Zhang and Hibler 1997

Newton

do
$$k=1$$
, k_{max}

'solve'
$$J(u^{k-1})\delta u = -F(u^{k-1})$$

$$\mathbf{u}^{k} = \mathbf{u}^{k-1} + \delta \mathbf{u}$$

stop if
$$\|\mathbf{F}(\mathbf{u}^k)\| < \gamma_{nl} \|\mathbf{F}(\mathbf{u}^0)\|$$

enddo

e.g. Lemieux et al. 2012, Mehlmann and Richter 2017

Pros and cons of current implicit solvers

measure of numerical convergence

implicit approach (no stability issue)

slow to super-linear convergence

issues with parallelization

robustness

$$\mathbf{A}(\mathbf{u})\mathbf{u} = \mathbf{b} \implies \mathbf{u} = \mathbf{G}(\mathbf{u}) \implies \mathbf{u}^{k+1} = \mathbf{A}^{-1}(\mathbf{u}^k)\mathbf{b}$$

$$\mathsf{do} \ \mathsf{k} = 1, \ \mathsf{k}_{\mathsf{max}}$$

$$\mathbf{f}^k = G(\mathbf{u}^k) - \mathbf{u}^k$$

$$\mathsf{min} \ \left\| \alpha_0 \mathbf{f}^{k-m} \dots + \alpha_{m-1} \mathbf{f}^{k-1} + \alpha_m \mathbf{f}^k \right\|$$

$$\mathbf{u}^{k+1} = \alpha_0 \mathbf{u}^{k-m} \dots + \alpha_{m-1} \mathbf{u}^{k-1} + \alpha_m \mathbf{u}^k$$
enddo

Anderson acceleration combines a few (m) iterates by minimizing the residual.

Nonlinear convergence: Picard and Anderson

Nonlinear solver convergence (sea-ice momentum equation)

The (explicit) EVP solver

do s=1, N_{sub}

$$\frac{\sigma^{s} - \sigma^{s-1}}{\Delta t_{e}} + \frac{\sigma^{s}}{\alpha T} = \frac{\zeta}{T} \frac{\partial u^{s-1}}{\partial x} - \frac{P}{2\alpha T}$$

$$\rho h \left(\frac{u^{s} - u^{s-1}}{\Delta t_{e}}\right) = -C_{w}(u^{s-1})u^{s-1} + \frac{\partial \sigma^{s}}{\partial x} + \tau_{a}^{n}$$

enddo

Hunke, 2001

Pros and cons of current explicit solvers

easy to understand, easy to implement

well suited for parallelization

no measure of numerical convergence

noise in numerical solutions

Simulated deformations with the EVP

Lemieux et al. 2012

Simulated deformations with the EVP

Koldunov et al. 2019

Outline

- Introduction on sea ice dynamics
- The importance of sea ice rheology
- The viscous-plastic (VP) rheology
- Current numerical solvers for sea ice dynamics
- Critics of the VP model and new approaches
- Conclusions

Observed and simulated deformations

Girard et al. 2011

Observed and simulated deformations

Bouchat and Tremblay 2017

MITGCM-1km. Courtesy of Nils Hutter

Intersection angle between lines of deformations

Hutter and Losch 2019

Intersection angle between lines of deformations

Ringeisen et al. 2019

The elastic-anisotropic-plastic rheology

- Considers subgrid-scale anisotropy
- notable changes to sea ice drift and geophysical distribution of thickness
- same solver approach than EVP

Tsamados et al. 2013, Heorton et al. 2018

The Maxwell-elasto-brittle (MEB) rheology

neXtSIM (Rampal et al., 2015)

The MEB rheology

- rigid state of sea ice is elastic
- Mohr-Coulomb failure criterion
- use of a damage parameterization

Girard et al. 2011, Rampal et al. 2016, Dansereau et al., 2016

Ideal MEB simulations

The angle of fractures are not following granular theory

Plante et al. 2020

The damage is unstable in compressive failures

Outline

- Introduction on sea ice dynamics
- The importance of sea ice rheology
- The viscous-plastic (VP) rheology
- Current numerical solvers for sea ice dynamics
- Critics of the VP model and new approaches
- Conclusions

Conclusions

- Solving the sea ice momentum equation is challenging
- Explicit and implicit solvers all have pros and cons.
- New (rheology) approaches also have numerical issues
- These numerical problems get more serious as dx decreases and as more processes and coupling to other components are included.
- As dx decreases, the continuum assumption breaks down....

