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Winton et al.

/-coordinates v. isopycnal coordinates

, 1998: z-coordinate models excess mixing in overflows

— Numerous coordinate/mixing studies: Griffies et al., 2000; Chassignet et al., 2003;
Legg et al., 2006; Burchard & Rennau 2008; Megann et al., 2010; ...

e Dunne et al.

— ESM2M: z-coordinate, shallow AMOC
— ESM2G: isopycnal layer model, deep AMOC with overflows

Depth(m)

B) Atlantic overturning: ESMZM (Sv)

C) Aflonhc overiurnmg ESM2G (Sv)

< |

-22-20-18 -16 -14 -12 -10 -8 -6 -4 -2 0

ECMWF Annual Seminar

1

ey 60°N
Illlll-
2 4 6 8 10 12 14 16 18 20 22

Lagrangian-remap dynamic core of MOMG - Adcroft

1
40°N

, 2012: compared ESM2M and ESM2G, both 1° resolution

D) Atlantic 24N

1
60°N -20.

Dunne et al., 2012

_— EsM2m
: Ganachaud & ESM2G |
soco Wunsch, 2003 Talley 2003 -
l —IO 0. l IO 20.
Northward Overturning (Sv)




Role of mesoscale eddies

 Delworth et al., 2012, coupled model ¢ Griffies et al., 2015, diagnosed how

series (CM2.1, CM2.5, CM2.6): transient eddies in a 0.1° ocean
— 50 km atmosphere transport heat upwards
— 1°, %° and 0.1° ocean — CM2.6 least heat uptake of CM2.x series
— 1° alone has SGS eddy parameterization — Argue that CM2.5 has most heat uptake
(Gent-McWilliams) due to weak eddies and no GM
) | ~ Evolution of horizontally averaged potential temperature, 6 (°C). .
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Measuring spurious mixing

* Measure work done by mixing in ¢ llicak et al., 2012, argued }4° z-
spin down experiments

— Turning off explicit mixing leaves

only numerical mixing*
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MOMG6 and OM4

* Reducing spurious mixing Adcroft et al., 2019
motivated MOM6 development
— General coordinate to avoid

limitations of potential density
(used by isopycnal layer models)
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e MOMG6 broadly reproduced prior
solutions using z-coordinates
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e Adoption of hybrid z-density

coordinates reduced heat uptake ~3000 1 —

5 —s000{ OM4 1/4° hybrid-coordinates
— SUCCeSS: B

1767 1827 1887 1947 2007

ECMWF Annual Seminar Lagrangian-remap dynamic core of MOMS6 - Adcroft 5 @




General coordinates (Boussinesq)

e Hydrostatic Primitive Equations (for ocean) in general
coordinatesr =1r(x,y,z,t):

0 ou
00 a—l;+(f+§)z/\u+ra—+V K|=-V,p—pV,0+F
oD 8p 0
p or 6r
azr a(Zr I") _ 0z
> +V, - (zpu)+ o =0 Zr = 5=
: (2)
(6 z,) 06z 1) aJ,
Vr . - = Zy Y _
pp + (Oz,u) + P 7Ny P
(2)
a(S z A(S z» aJ
( Z)+V,,-(Sz,»u)+ ( zr) NG — 2
ot or ar Starr, 1945;
p=p(S,0,-gpoz(r)) Kasahara, 1974; ...

ECMWF Annual Seminar Lagrangian-remap dynamic core of MOMS6 - Adcroft 6 @




Layer integrated general coordinate equations

* Integrating between surfaces of constantr convertsz, = h = [ z,.dr and

Or = Or RURTS :
ZANhu+7r +V,K|=-V,p—-pV, O +F
6t h or

p0,®+0,p=0

—+V (hu)+5/(,/)

o0 h
© ) Y, - (Bhw) + 6,040 = WA = 6,0
o(S h)

 _ )
+V, - (Shu)+ 5,,(;@4) = hN?, = 6,5

pP=p (S> 0, _gp()z(r))
* Choosingr = 0 follows the vertical motion - Vertically Lagrangian
— removes explicit vertical transports - no vertical CFL

ot
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Lagrangian remap algorithm

Dynamics +
“physics” Reconstruction<> Average

Zn /Si-0N /7 N /7 N\ it

Qn
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Eulerian, ALE and LRM algorithms side-by-side

introduces
Eulerian A.L.E. grid motion wg Langrangian-remap
0zp = _gp(Z»Sn»Hn) d;p = _gp(Z:Sn:Hn) d,p = —gp(z,S™,0™)
v,’l‘+1=v}}+At(—% Zp+---) vt = vl + At (—% Zp+---) vy = vl + At (—% Zp+-~)
d,w=—V-prt! S (W*+w,) = -V Ryt
.'.
R = B 4 AtSy(wy) h' =" — AtV - (h"v))
1
gr+1 = gn _pe |7 (VR07) +] WG = T hte' = hron — At [‘7 | (hnvggn)]
6z(w9n) + ... A [ V- (hnv;ll+19n) + ...
A.\ssu.ming explicit- A.ssgming explicit- +6k (W*Hn) + -
in-time transport m-:imetransport hn+1 - 6kZ (Z-'-) Gr'/'dgener'af/'on
wAt w At " f H
E < 1 AZ < 1 W*:W_Wg Qn =0 (Z(Z )) Remap
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Sub-cycling with Lagrangian vertical dynamics

opp = —p(z,S",0™)5, P

1 _ 1At __ Interndl _
v;tn_l- - v;;n + (_Vrp —pVr® + ) gravity Atcig

<1
waves Ax

pm+tl — pym _ %AtVr . (hmvfrln+1) .

Ugitlt = gl + %At(—Vﬂl + ) } Barotropic At\/gH

XLt =g e (HUMY Tves! LAx 1
XM - M 4 Tracers
h*C* — hnCn . MAt V- (z hmv}'rln+1cn> MAtuh <1
XN ) Ax
m=

Attl 5RZ(h*) ) cntl = C*(Z(h*)) y wen Vertical remap
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Consistent grid-generation and remapping

Interpolation for grid generation Reconstruction for remapping

* Accurate * Accurate
e Continuous (single valued) * Conservative
— resulting profiles are generally not — profiles often become
conservative discontinuous to be conservative
Second order --------- : Third order

reconstruction
Piecewise
Parabolic (PPM)

interpolation
(i.e. linear)

-—--1 -

o
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Remapping implementations

Remappingvia “advective flux” Remapping by “projection”
71 71 S+
h;;H_lH,?H — h}tgg_l_ f ke+s 0T dz _f k=3 0T dz h£+19,7{1+1 — k= 0T dz
2! 1 2! 1 z" ]
k+§ k—E k+§
Z-'- _________ z-'-
R Y .
| ~
®
.'.
0 0
®
®
Accurate conservation but locally inaccurate for CFL>1 Inaccurate total conservation but accurate locally
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Accurate conservation when remapping

Remap by “sub layers”

* Divide superset of old/new grids
into sub layers (2N-1)

* Integrate profile for each sub-layer

— By definition uses only one source
layer profile

* Replace largest sub-layer with

m
_ Tt
hi6p = h, 6, — z(l — 8;1;)h565
=

(insight from Hallberg)

* Sum sub-layers to new layer
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Piecewise * Methods (*=cLporaq)

 PLM: two degrees of freedom

— Cell mean + slope

* PPM: three degrees of freedom

— Very widely used
— Cell mean + two edge values

 PQM: five degrees of freedom

— Cell mean + two edge values + two
edge slopes  (White & Adcroft, JCP 2008)

Inspired by Daru & Tenaud, JCP 2004 — introduced OS; i=1..7
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lllustrating methods and spurious diffusion

Inappropriate interpolator leads Layered Isopycnal
to collapse of stratification

PLM-PCM

Diffusive behavior
reduces with increasing
order of remapping but

Minimal / does not vanish

smoothing
: of

interface
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Overflows

* Dense flow down a slope [Day 1.6

LAYERED ISOPYCNAL CONTINUQUS ISOPYCNAL

— Hydrostatic and adiabatic

* Layered isopycnal solution is
truly adiabatic

e z* and terrain-following both
have modified water masses

SIGMA

* LRM + density coordinates
(found by interpolation)
behaves very similarly to
layered model

Ad

ECMWF Annual Seminar Lagrangian-remap dynamic core of MOMS6 - Adcroft



e Lateral processes (incl.
transport) acting on inclined

isopycnals /

=

A"

* Along isopycnhal processes in
non-isopycnal coordinates

Sources of spurious mixing

* Dia-surface transportin vertical

— Minimizing dia-surface motion reduces
numerical diffusion

* Choosing a coordinate close to isopycnal is
desirable to minimize spurious diffusion
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Hybrid and other coordinates

* Already know that pure e z-tilde: Leclair & Madec, 2011;
Petersen et al., 2015

isopycnal coordinates have
e adaptive: Hofmeister et al., 2010;

limitations € . ,
. . Grawe et al., 2015; Gibson (thesis)
* Bleck, 2002, introduced hybrid z- 7019

rho coordinate in HYCOM
GRS KA 19001231

e OM4 used “HYCOM1” which s a
simple interpretation of actual
HYCOM hybrid coordinate
— Ongoing work with Wallcraft and

Chassignet to improve grid
generation (c.f. AMOC results)
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Balancing heat transfer by eddies and mixing

° COm pa ring Z* to hybrld 5000 Ocear:rheat content change
coordinate provides magnitude D
of spurious numerical mixing N | [ oSt mau

* Reducing resolution from %° to g ww| 07/ S::;::;S — Zammaetal, 2019
%° (eddying to non-eddying) : \
inhibits
— %° requires eddy parameterization 0 PAAC AN RERA

* Refining resolution from %° to %° ., /A More efficient eddies?
reduces heat uptake: ’ R

_ more efficient eddies * This really tells us we (inadvertently)
managed to perfectly compensate

— and/or less numerical mixing? for weak eddies at 4° resolution
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OM4 AMOC

* Main concern is OM4 with hybrid coordinate still has a shallow AMOC
— |s this mixing in overflows?

a) o AMOC (OM4p25) years 1988-2007 .
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— It turns out we did have too much parameterized mixing but reducing that has had
no affect on depth of AMOC. In fact nothing we’ve tried so far seems to!
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* Motivated by results with isopycnal layered models we built MOMBS6,
capable of using arbitrarily general coordinates following HYCOM’s
pioneering hybrid coordinate

* Lagrangian Remap Algorithm has significant advantages for Earth
System Models with many constituents

* High-order numerical methods + LRM deliver low levels of spurious
mixing

* In OM4, putting everything together, a mystery remains as to why
AMOC is shallower than in ESM2G
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Quantifying spurious mixing using energetics

* Potential energy

PEzgfﬂ pz dV D.
* Available potential energy (APE)
APE=PE —RPE -¢
B :'I‘:APE
RPE=gfff p*zdV
e p*isthe adiabatically re-arranged 1 T
state with minimal potential 72(p.+p,)
energy ®
 RPE can only be changed by
diapycnal mixing %(p. +p,)

— Mixing raises center of mass Winters etal., JFM 1995
llicak etal., OM 2012
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OM4

* OMA4 is the ice-ocean component
of GFDL's latest coupled model
CM4 (Held et al., 2019)

* OM4 configuration
— |dentical setup/parameters to CM4

— Developed almost exclusively in
coupled mode
* Uncoupled OM4
— Nominally eddy-permitting %°
horizontal resolution

* Non-eddying’2° with eddy
parameterization (GM+EKE scheme)

ECMWF Annual Seminar

Lagrangian-remap dynamic core of MOMG - Adcroft

Ingredients:

* MOM6

— using hybrid z-p vertical coordinates
e ePBL c.f. HYCOM, Bleck 2002

— Reichl and Hallberg, 2019

 Scale-aware MLE restratification
— Fox-Kemper et al., 2011

* Shear-dependent mixing
— Jackson et al., 2008

* |nternal-wave driven mixing
— Melet et al., 2012

* BBL
— Legg et al., 2006

Adcroft et al., JAMES 2019
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