

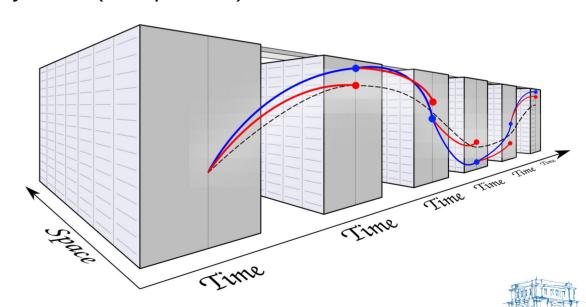
Next-Generation Time Integration targeting Weather and Climate Simulations Part I: Rational Approximation of Exponential Integrators

Martin Schreiber

Computer Architectures and Parallel Systems (of Equations)

Technical University of Munich

This presentation is based on collaborations with Terry Haut Richard Loft Nathanael Schaeffer Cheers!



Seminar "Numerical methods for atmospheric and oceanic modelling: recent advances and future prospects" ECMWF, Reading, UK, September 18th, 2020

Application focus: weather/climate simulations

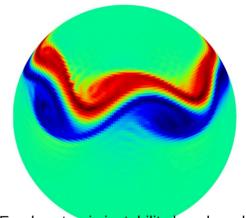
- Weather simulations:
 - Ongoing demands for increase in accuracy via increase in resolution
 - Leads to smaller and hence more time steps
 - Challenge: Forecasts need to be completed within a specific time frame (about 1 hour)
- Climate simulations:
 - low resolution, but long simulation time span (e.g. for Paleoclimate) requires weeks or months of wall clock time
 - Challenge: reduce wallclock time

Are there alternative concepts to improve accuracy vs. wallclock time?

Test case: single-layer atmospheric model

- First steps towards new formulations:
 - Use single-layer atmospheric model
 - Can be related to shallow-water equations

$$\begin{array}{lcl} \frac{\partial \boldsymbol{\Phi}}{\partial t} & = & -\nabla \cdot (\boldsymbol{\Phi} \boldsymbol{V}) \\ \frac{\partial \boldsymbol{V}}{\partial t} & = & -\nabla \boldsymbol{\Phi} - f \boldsymbol{k} \times \boldsymbol{V} - \boldsymbol{V} \cdot \nabla \boldsymbol{V} \end{array}$$



E.g. barotropic instability benchmark Relative vorticity field

- Shallow-water equations (SWE) are commonly used to study horizontal discretization aspects as a first step to develop new methods for dynamical cores
- Discretization and time integration in this work
 - Numerics aligned with ECMWF's model, e.g. Spherical Harmonics
 - Plenty of details skipped in the following slides, in particular efficient solvers for Helmholtz (and Helmholtz-like) problems.

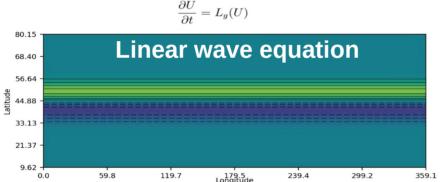
Splitting SWE into "subproblems"

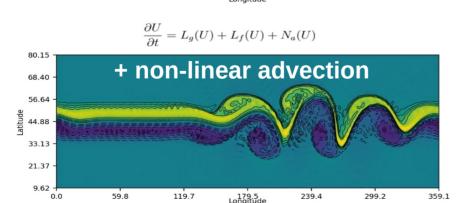
$$\left[\begin{array}{c} \frac{\partial \Phi}{\partial t} \\ \frac{\partial \mathbf{V}}{\partial t} \end{array} \right] = \underbrace{\left[\begin{array}{c} -\overline{\Phi}\nabla \cdot \mathbf{V} \\ -\nabla \Phi \end{array} \right]}_{L_g(U)} + \underbrace{\left[\begin{array}{c} 0 \\ -f\mathbf{k} \times \mathbf{V} \end{array} \right]}_{L_c(U)} + \underbrace{\left[\begin{array}{c} -\mathbf{V} \cdot \nabla \Phi' \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_a(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\ -\mathbf{V} \cdot \nabla \mathbf{V} \end{array} \right]}_{N_d(U)} + \underbrace{\left[\begin{array}{c} -\nabla \Phi' \cdot \mathbf{V} \\$$

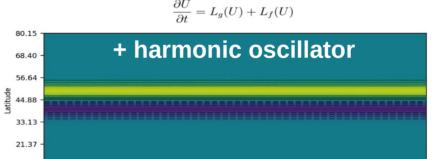
9.62

59.8

119.7



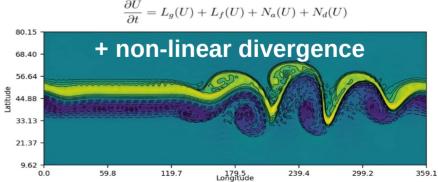




179.5 Longitude 239.4

299.2

359.1



Overview of different research directions

- **EXP:** Exponential time integration
 - T-REXI
 - CI-REXI

- ..

Part of this presentation

- **SL**: Semi-Lagrangian methods
 - State of the art
 - Combined with Parareal
- PFASST
 - Spectral deferred correction (SDC)
 - Multi-level
 - Parallel-in-time corrections (Parareal)

- Combinations of methods:
 SL / EXP / SDC / Parareal
- "Tuning" of methods (Convergence / accuracy)
- EXP Machine learning with ANN
- (Quantum Computing)

Overview

- Introduction
- Exponential integration
 - Introduction
 - CI-REXI (Cauchy Contour Integral method)
 - Studies with SWE
 - Linear SWE: Error vs. wall clock time studies
 - Non-linear PDEs: Error vs. wall clock time studies
- Summary & outlook

Exponential integrators: Linear case

 Direct solution at arbitrary point in time given by

$$U(t) = e^{tL}U(0) = Qe^{t\Lambda}Q^{-1}U(0)$$

- Note, that we can / should never setup the Eigenvector matrix "Q" explicitly!
- Important properties
 - No errors in time!
 - Theoretically,
 - infinitely large time steps (no CFL limitation)
 - going forward / backward in time (for oscillatory systems)

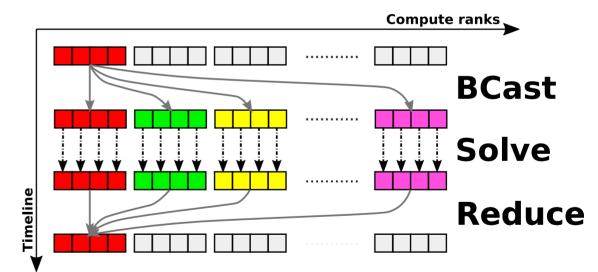
- Exponential is
 - simple to solve for ODE systems
 (Setup "Q" matrix), however it is
 - challenging to find efficient solver for PDEs (Infeasible to setup "Q")

Approach taken here:
 Rational approximation of exponential integrators (REXI)

REXI: Formulation & Parallelization

- Linear PDE: With some linear algebra, we get a sum over independent terms
- Replace exponential with parallelizable part => parallel-in-time (see right picture)
- WARNING: We solve the REXI terms with spherical harmonics. This is much more challenging with other spatial discretizations!!!

$$\mathsf{U}(\mathsf{t}) = \mathsf{e}^{\mathsf{tL}} \mathsf{U}(\mathsf{0}) \approx \sum_\mathsf{n} \beta_\mathsf{n} (\mathsf{I}\alpha_\mathsf{n} + \mathsf{tL})^{-1} \mathsf{U}(\mathsf{0})$$



A tool for the best REXI method

- There are various REXI methods:
 - T-REXI
 - CI-REXI
 - B-REXI
 - EL-REXI
- Each method has various parameters

- **Different requirements** from application side:
 - Oscillatory / diffusive linear PDE
 - Stability requirements
 - Filtering requirements
 - Workload (number of REXI terms)
 - Consistency

-

Results in **high-dimensional optimization space** which is hard to explore => **Software-supported exploration** (coming soon)

For sake of time, example provided by Cauchy Contour integral method

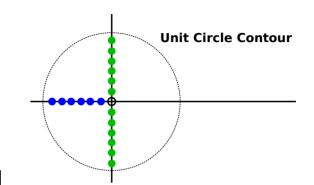
Overview

- Introduction
- Exponential integration
 - Introduction
 - CI-REXI (Cauchy Contour Integral method)
 - Studies with SWE
 - Linear SWE: Error vs. wall clock time studies
 - Non-linear PDEs: Error vs. wall clock time studies
- Summary & outlook

CI-REXI: Cauchy Contour Integral

Cauchy contour integral is defined as

$$f(x_0) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)}{z - x_0} dz$$



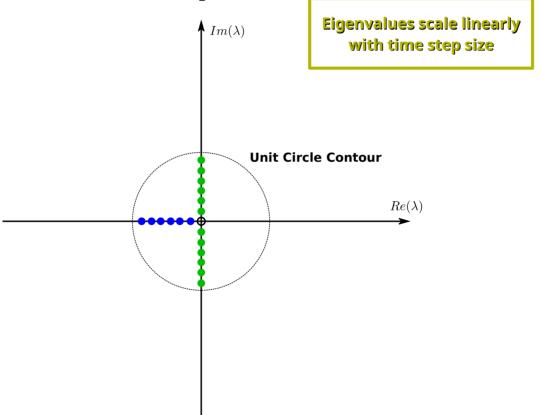
with $f(z) = \exp(z)$ to be approximated by REXI

• Using e.g. a circle contour around the origin and a trapezoidal rule we get

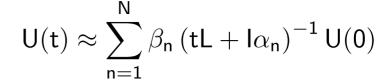
$$\text{and finally } \exp(x) \approx \sum_{n=1}^{N} \frac{\beta_n}{x + \alpha_n} \qquad \qquad \beta_n = -(R \exp(i\theta_n)) \\ \beta_n = -\frac{1}{N} \left(R \exp(i\theta_n)\right) \exp\left(R \exp(i\theta_n)\right)$$

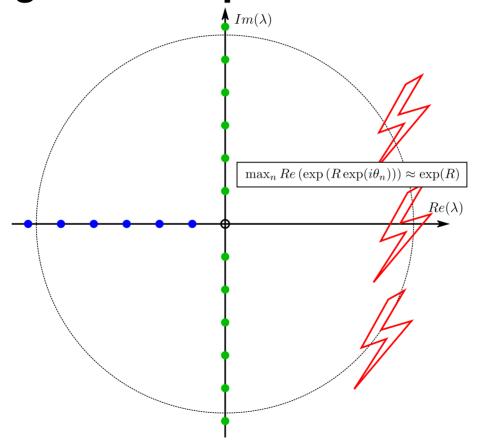
$$U(t) = \exp(tL)U(0) \approx \sum_{n=1}^{N} \beta_n \left(tL + I\alpha_n\right)^{-1} U(0)$$

CI-REXI: Small time steps

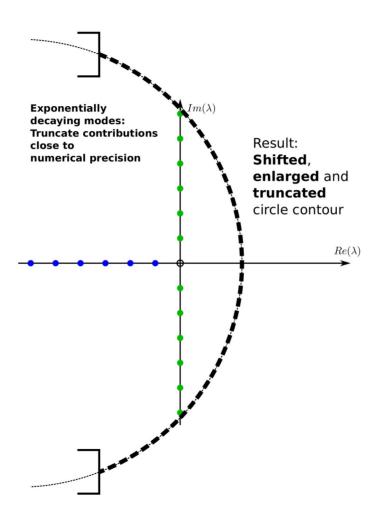


CI-REXI: Large time steps

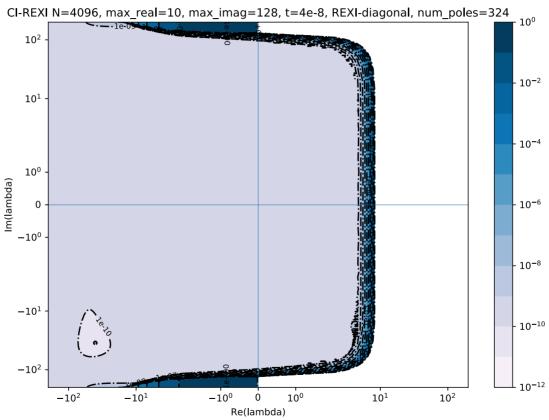




CI-REXI



Error L_{∞} plot for CI-REXI



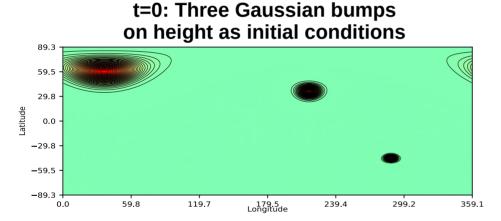
Error plots for CI-REXI with N=4096, maxImag=128, maxReal=10 and eps=4e-8 for the pole filter, resulting in N=324 poles. Results are extremely accurate, close to machine precision (10^{-10}).

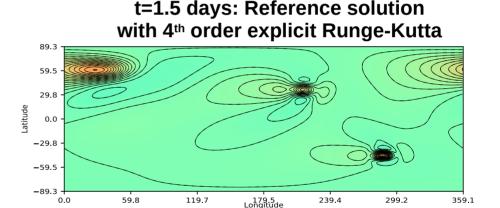
Overview

- Introduction
- Exponential integration
 - Introduction
 - CI-REXI (Cauchy Contour Integral method)
 - Studies with SWE
 - Linear SWE: Error vs. wall clock time studies
 - Non-linear PDEs: Error vs. wall clock time studies
- Summary & outlook

Benchmarks: Propagation of three Gaussian bumps with linearized single-layer SWE model

Test propagation of waves across rotating sphere over 1.5 days

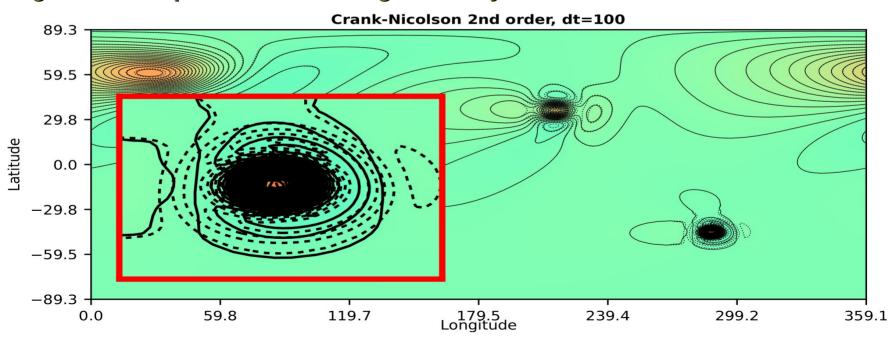




- Benchmarks based on full linear operator, including Coriolis effect
- Video: https://youtu.be/mmaj0l2ZO9k
- Terry's REXI coefficients (T-REXI) are used in the following slides

Crank-Nicolson (implicit), $\Delta t = 100s$

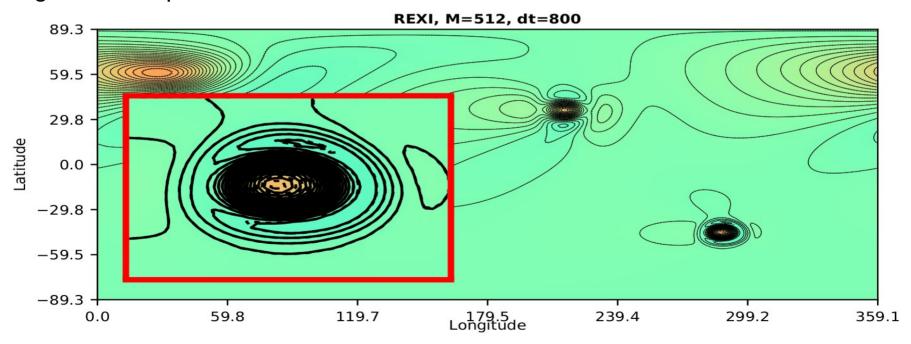
- Dashed lines: Reference solution
- Dispersion errors: Clearly visible
- Larger time step sizes: Errors significantly increase



Schreiber, M., & Loft, R. (2018). A parallel time integrator for solving the linearized shallow water equations on the rotating sphere. Numerical Linear Algebra with Applications, 26(2). https://doi.org/10.1002/nla.2220

T-REXI with M=512, $\Delta t = 800s$

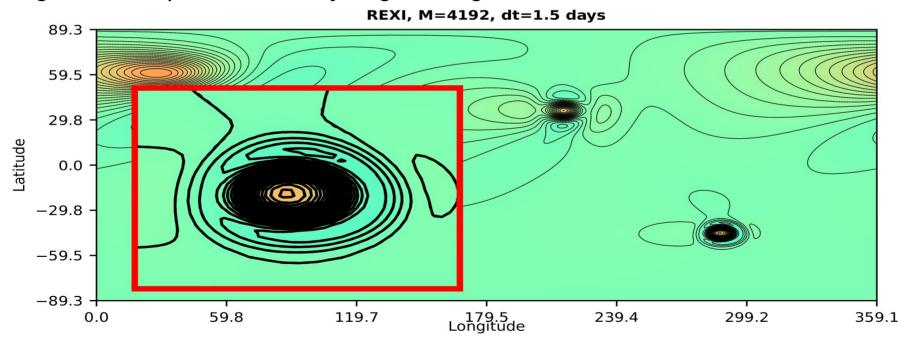
- Dashed lines: Reference solution
- Dispersion errors: Hardly any errors visible
- Larger time step sizes? => Next slide



Schreiber, M., & Loft, R. (2018). A parallel time integrator for solving the linearized shallow water equations on the rotating sphere. Numerical Linear Algebra with Applications, 26(2). https://doi.org/10.1002/nla.2220

T-REXI with M=4192, $\Delta t = 1.5$ days

- Dashed lines: Reference solution
- Dispersion errors: Not visible, extremely accurate!
- Larger time step sizes: already large enough...

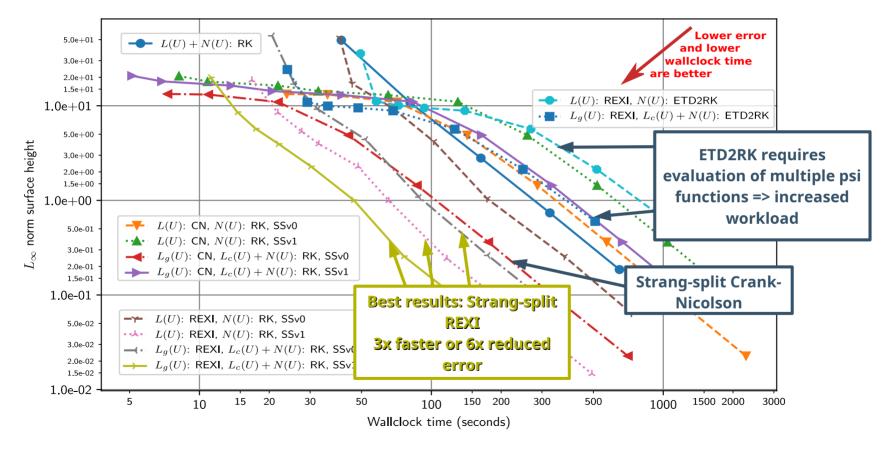


Schreiber, M., & Loft, R. (2018). A parallel time integrator for solving the linearized shallow water equations on the rotating sphere. Numerical Linear Algebra with Applications, 26(2). https://doi.org/10.1002/nla.2220

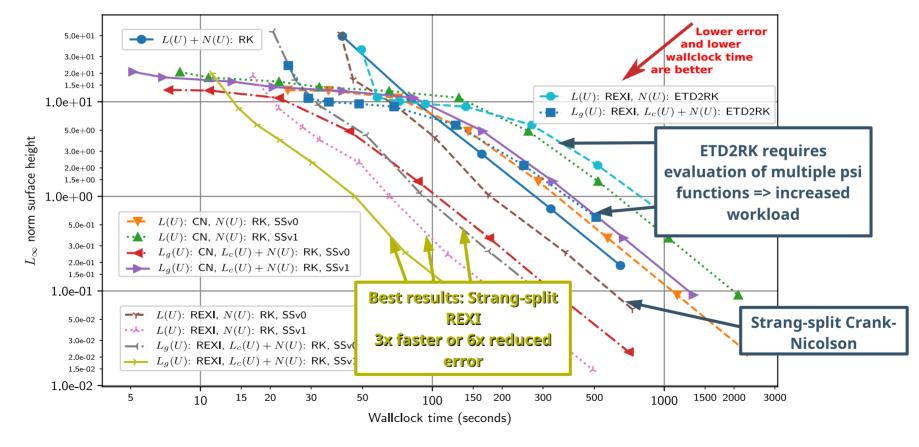
Overview

- Introduction
- Exponential integration
 - Introduction
 - CI-REXI (Cauchy Contour Integral method)
 - Studies with SWE
 - Linear SWE: Error vs. wall clock time studies
 - Non-linear PDEs: Error vs. wall clock time studies
- Summary & outlook

Barotropic instability: Error vs. wallclock time

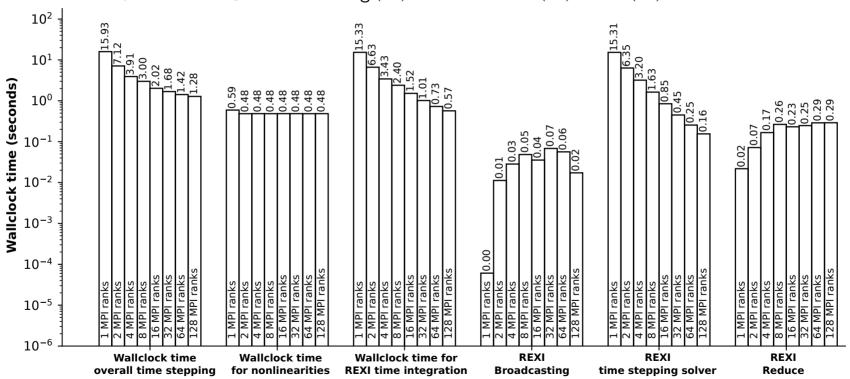


Barotropic instability: Error vs. wallclock time



Scalability breakdown

Based on best performing method $L_g(U) : REXI, L_c(U) + N(U) : RK, SSv1$



REXI communication does (in this case) not dominate overall simulation time More followup work on this soon (as part of KONWIHR funding)

Overview

- Introduction
- Exponential integration
 - Introduction
 - CI-REXI (Cauchy Contour Integral method)
 - Studies with SWE
 - Linear SWE: Error vs. wall clock time studies
 - Non-linear PDEs: Error vs. wall clock time studies
- Summary & outlook

Summary

- REXI with linear equations:
 No limitation on time step size with T-REXI method
- REXI with nonlinear equations: Improved error vs. wallclock time results

Future work

- REXI:
 - Efficient REXI solvers for non-globalspectral discretizations (work on fast direct solvers)
 - CI-REXI: Extension to flexible polynomial-based contours
- Semi-Lagrangian:
 - Proof-of-concept for EXP-SL on plane already shown (with Pedro Peixoto)
 - EXP-SL integration on the sphere is work in progress

Next-Generation Time Integration targeting Weather and Climate Simulations Part II: SDC, ML-SDC & PFASST

Martin Schreiber

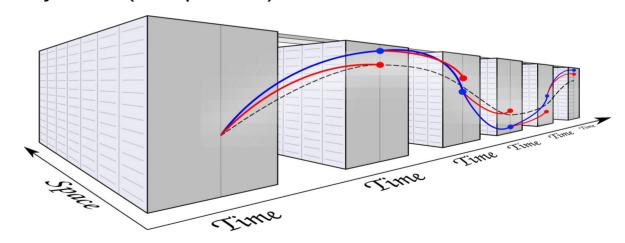
Computer Architectures and Parallel Systems (of Equations)

Technical University of Munich

This presentation is based on collaborations with

Francois Hamon Michael Minion

Cheers!



Overview of different research directions

- **EXP:** Exponential time integration
 - T-REXI
 - CI-REXI
 - ...
- SL: Semi-Lagrangian methods
 - State of the art
 - Combined with Parareal

Part of this presentation

- PFASST
 - Spectral deferred correction (SDC)
 - Multi-level
 - **Parallel-in-time** corrections (Parareal)

- Combinations of methods:
 SL / EXP / SDC / Parareal
- "Tuning" of methods (Convergence / accuracy)
- EXP Machine learning with ANN
- (Quantum Computing)

- Introduction
- Spectral deferred Correction
 - Introduction
 - Issues with DC
 - SDC example
- ML-SDC
 - Introduction
 - Results
- PFASST
 - Introduction
 - Results
- •
- Summary & outlook

SDC: Idea of Deferred/Defect Corrections

Let an Cauchy problem be given by an ODE

with the initial condition

$$\frac{dU(t)}{dt} = f(t, U(t))$$
$$u(a) = u_0$$

at the beginning of each time step

Spectral Deferred Correction (SDC) is based on whatever "standard time integrator"
 R there is

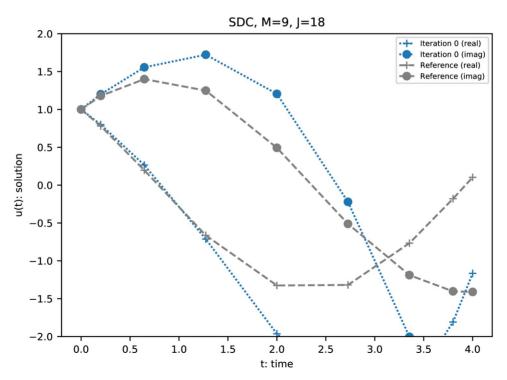
$$U_{n+1} = R(U_n, t, \Delta t_n)$$

which could be explicit, implicit, IMEX, exponential, basically whatever you want to put in.

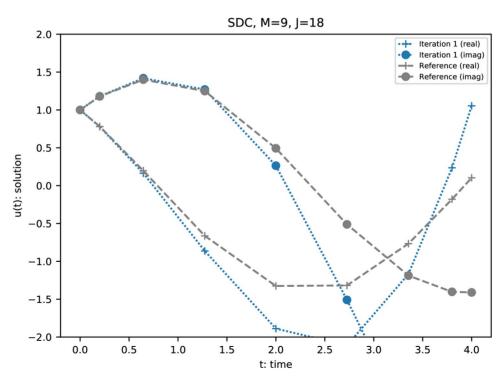
- From a software point of view, SDC can be used in a black-box fashion by just providing "R".
- SDC then assembles the "R" evaluations in order to get a higher-order time integration method.

SDC Example: Initial guess

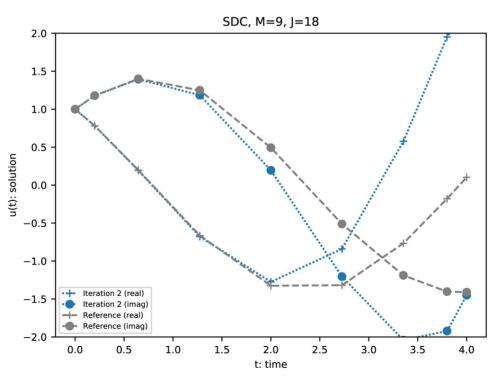
- Use k-th order accurate standard time integrator
- Linear oscillator



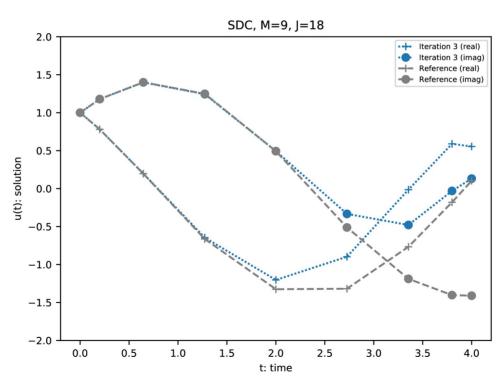
SDC Example: 1st correction iteration



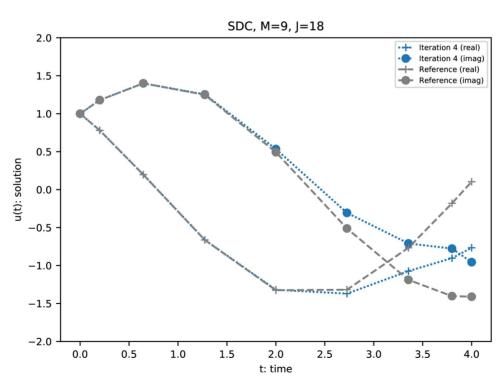
SDC Example: 2nd correction iteration



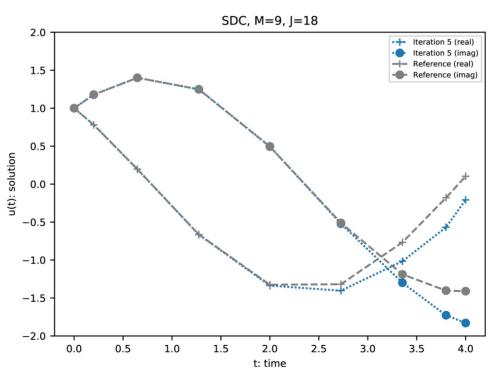
SDC Example: 3rd correction iteration



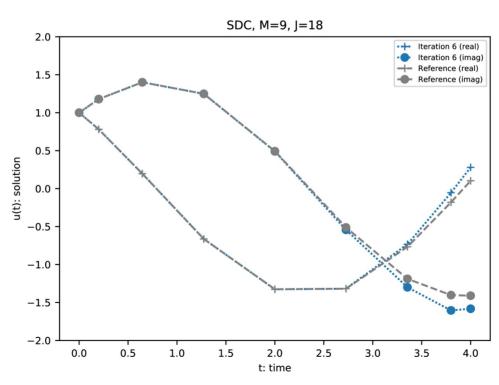
SDC Example: 4th correction iteration



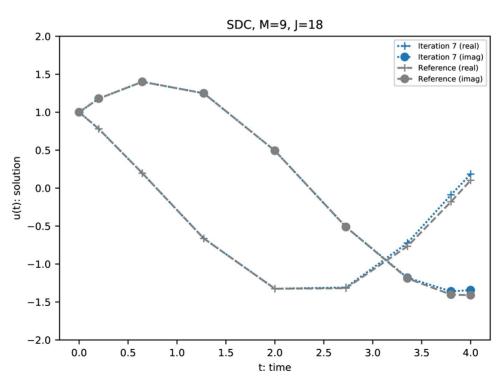
SDC Example: 5th correction iteration



SDC Example: 6th correction iteration



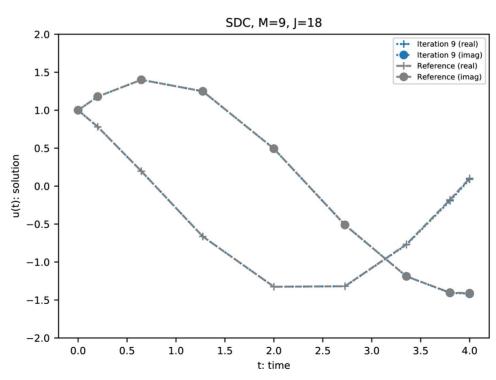
SDC Example: 7th correction iteration



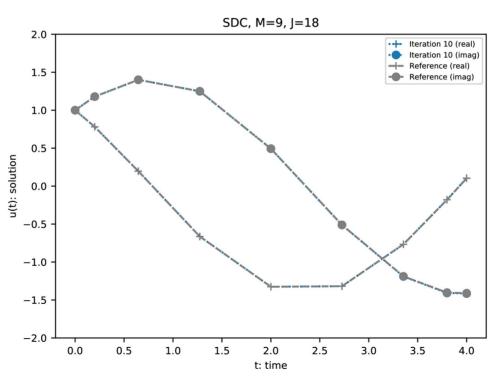
SDC Example: 8th correction iteration



SDC Example: 9th correction iteration

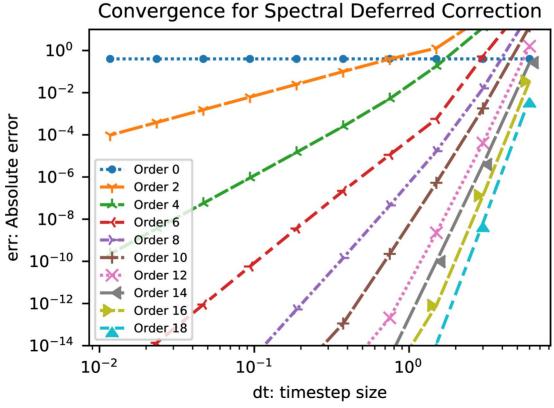


SDC Example: 10th correction iteration



DC Convergence for different M

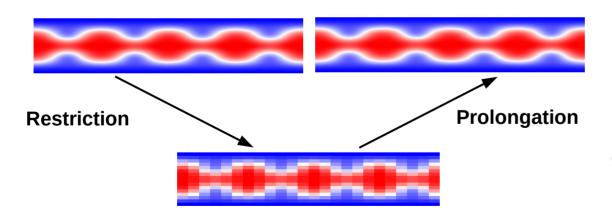
• Order = M+1 nodes



- Introduction
- Spectral deferred Correction
 - Introduction
 - Issues with DC
 - SDC example
- ML-SDC
 - Introduction
 - Results
- PFASST
 - Introduction
 - Results
- •
- Summary & outlook

Multi-Level SDC

- Idea: Replace some of the computationally expensive SDC sweeps on high resolution with computationally less expensive ones on a lower resolution
- Using full approximation scheme (should be known from multi-grid methods)



Fine

- smaller time step sizes
- high spatial resolution

Coarse

- larger time step sizes
- lower spatial resolution

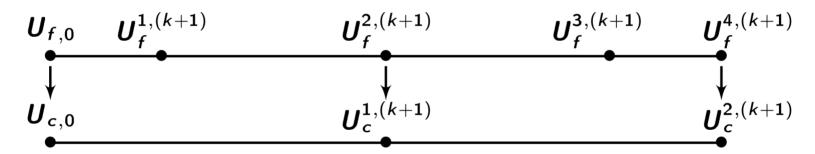
Emmett, M. and Minion, M. L. (2012). Toward an efficient parallel in time method for partial differential equations. Communications in Applied Mathematics and Computational Science

Coarse/fine projections

Restriction

- Time:

Point-wise injection at the GL SDC nodes



Space:
 Modal truncation based on spherical harmonics ("p"-adaptivity)

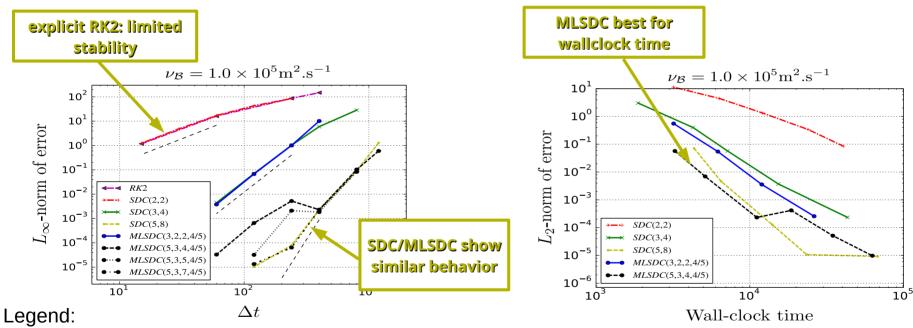
Prolongation

Time/Space: Canonical to restriction

Multi-Level Spectral Deferred Corrections

Error vs. timestep size

Error vs. wallclock time



SDC(# nodes, # sweeps)

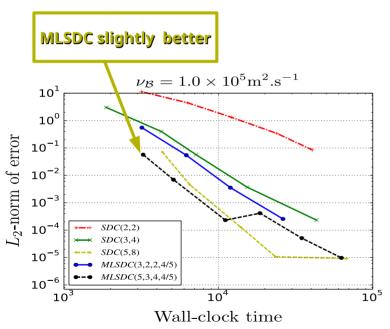
MLSDC(# fine nodes, # coarse nodes, # MLSDC sweeps, coarsening ratio)

Hamon, F. P., Schreiber, M., and Minion, M. L. (2019). Multi-level spectral deferred corrections scheme for the shallow water equations on the rotating sphere. Journal of Computational Physics

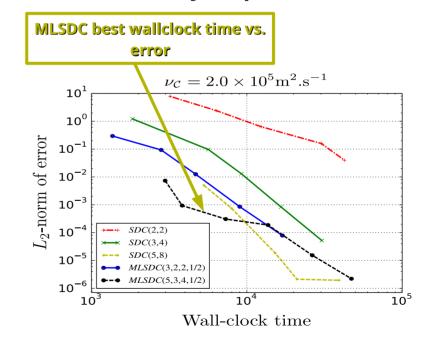
MLSDC: Error vs. wallclock time

Moderate coarsening

+ Less viscosity required



Aggressive coarsening + More viscosity required!



Legend:

SDC(# nodes, # sweeps)

ML-SDC(# fine nodes, # coarse nodes, # MLSDC sweeps, coarsening ratio)

Hamon, F. P., Schreiber, M., and Minion, M. L. (2019). Multi-level spectral deferred corrections scheme for the shallow water equations on the rotating sphere. Journal of Computational Physics

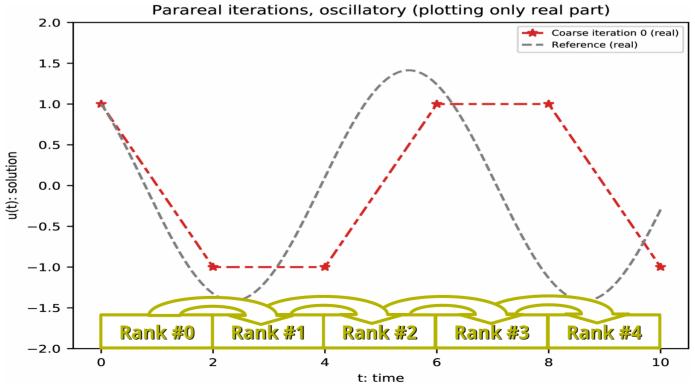
- Introduction
- Spectral deferred Correction
 - Introduction
 - Issues with DC
 - SDC example
- ML-SDC
 - Introduction
 - Results
- PFASST
 - Introduction
 - Results
- Summary & outlook

Parareal algorithm

- The first step is to **subdivide the time** integration interval [0; T] into **coarse time steps** of size Δt
- We also require two time integrators
 - **Fine** time integrator $\mathcal{F}(u,t_n,t_{n+1})=\mathcal{F}(u,\Delta t_n)$ and
 - Coarse time integrator $C(u, t_n, t_{n+1}) = C(u, \Delta t_n)$ Needs to be much faster than the fine integrator!
- (Disclaimer: In the following slides, we will discuss the most basic version of the Parareal algorithm)

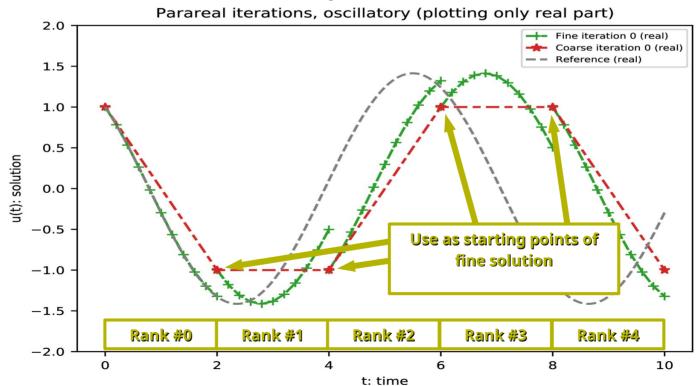
Parareal: Initial iteration

- Run coarse time integrator
- Purely sequential, hence requiring fast coarse integrator

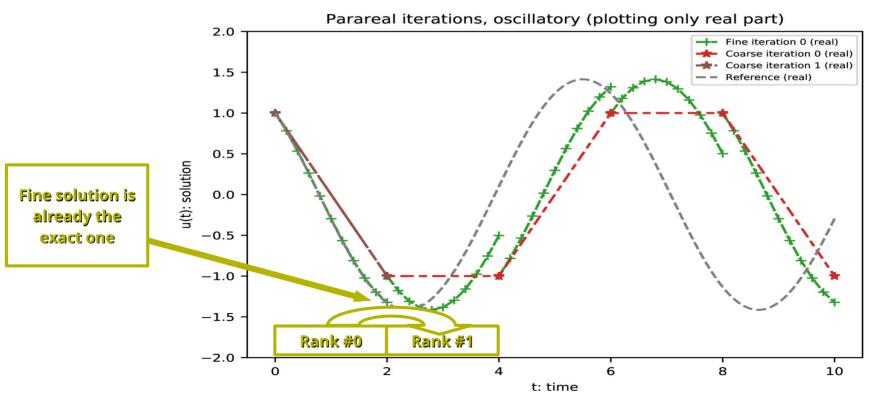


Parareal: 1st iteration, fine time stepper

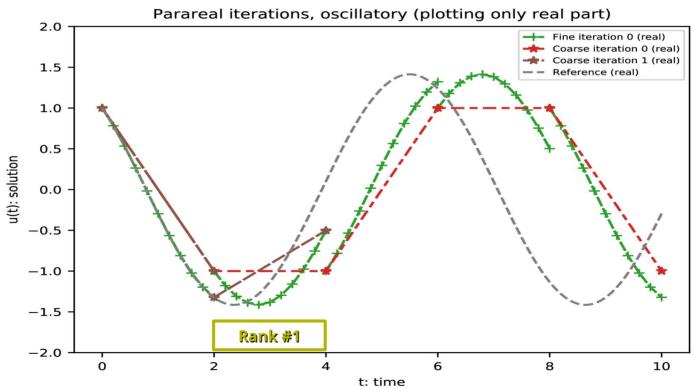
- Run fine time steppers
- In parallel across all coarse time steps



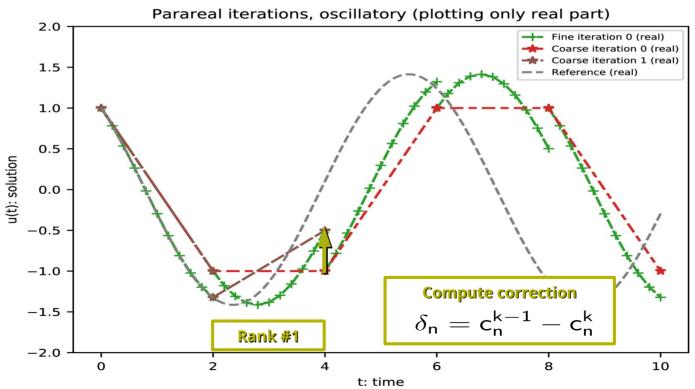
Nothing to do, already converged to fine time stepping solution



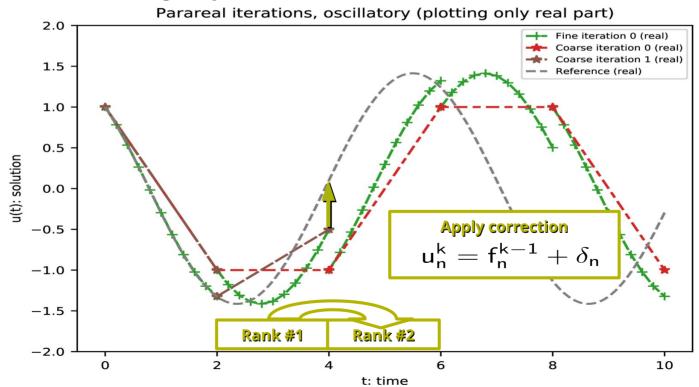
• Run coarse time step with new initial value



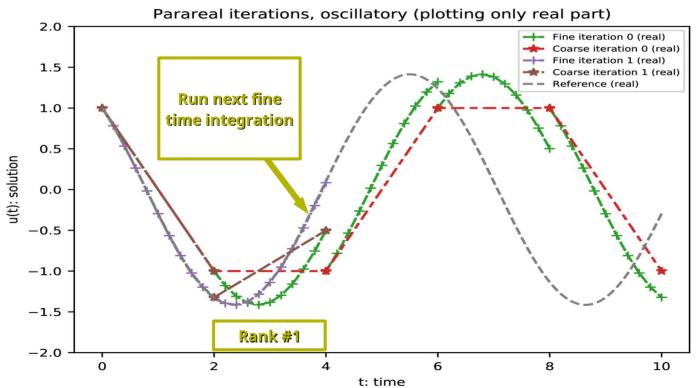
Compute correction



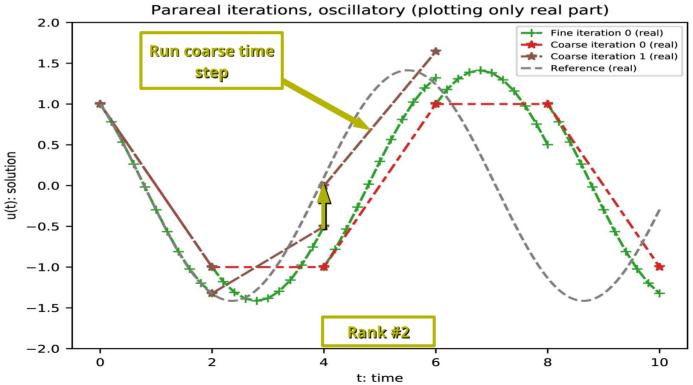
- Compute correction & send new corrected value to next rank #2
- Rank #2 starts iterating in parallel (not yet shown here)



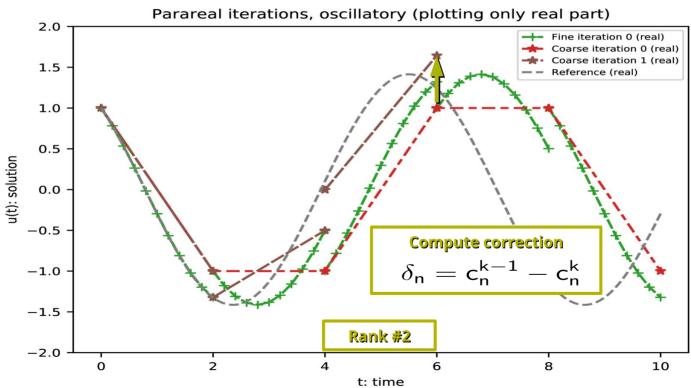
- Run fine time stepping parallel to rank #2 computations
- Continue with next iteration



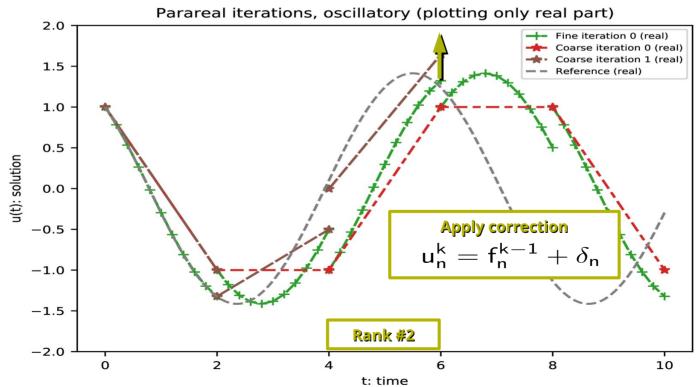
- This happens in parallel to previous slide!
- Compute coarse time integration



Compute correction

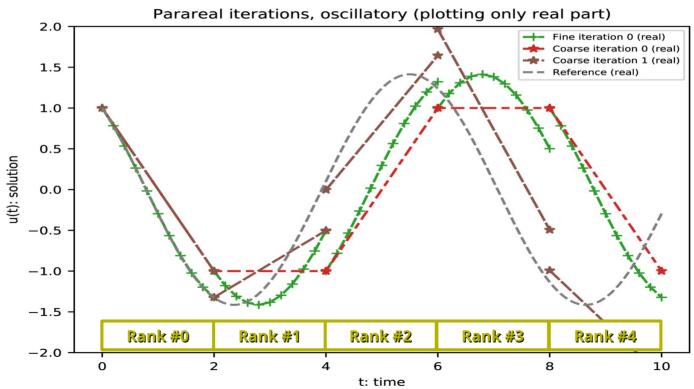


- Compute correction & send new corrected value to next rank #3
- Rank #3 starts iterating in parallel (not yet shown here)



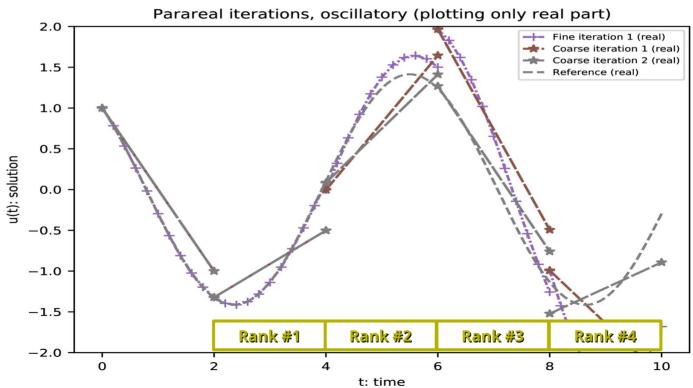
Parareal: 1st iteration

Visualization of full Parareal iteration from hereon



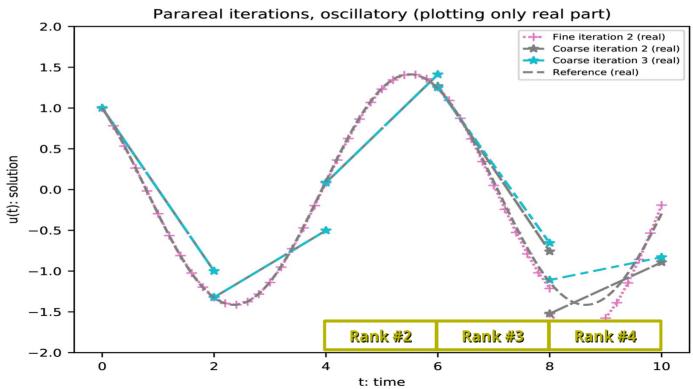
Parareal: 2nd iteration

Not yet converged



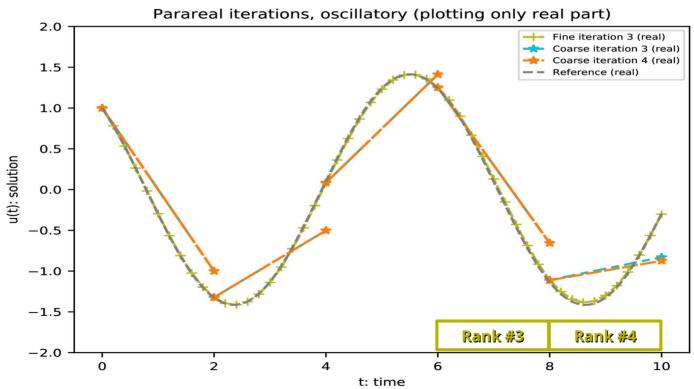
Parareal: 3rd iteration

Relative high accuracy after 3 iterations



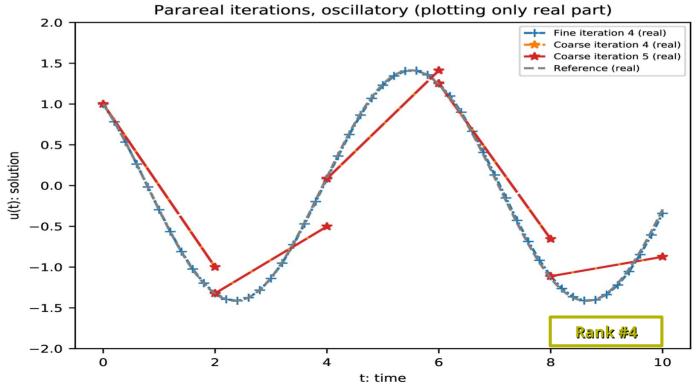
Parareal: 4th iteration

Relative high accuracy after 4 iterations = 4 fine iterations



Parareal: 5th iteration

- Solution converges exactly to the one of the non-Parareal fine integrator
- However, wallclock time would be worse than sequential time integration



PFASST: Parallel Full Approximation Scheme in Space and Time

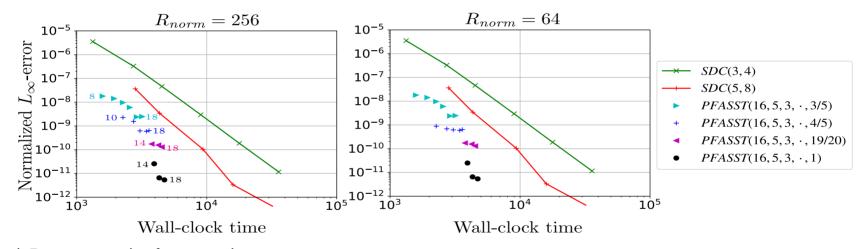
PFASST algorithmic parts

Algorithmic part	Main motivation
SDC Iterative within the time step	Higher order
Multi-level in space	Save compute time
Parallel across time steps	Exploit increased parallelism

Emmett, M. and Minion, M. L. (2012). Toward an efficient parallel in time method for partial differential equations. Communications in Applied Mathematics and Computational Science

PFASST wallclock time results

- Benchmark: Barotropic instability benchmark on the sphere after 144h
- Point sets: For increasing number of iterations (sweeps)



Legend: R_{norm} = truncation for computing errors SDC(# nodes, # sweeps) PFASST(# processors, # fine nodes, # coarse nodes, # MLSDC sweeps, coarsening ratio)

PFASST is Pareto optimal for all time step sizes

- Introduction
- Spectral deferred Correction
 - Introduction
 - Issues with DC
 - SDC example
- ML-SDC
 - Introduction
 - Results
- PFASST
 - Introduction
 - Results
- Summary & Outlook

Summary

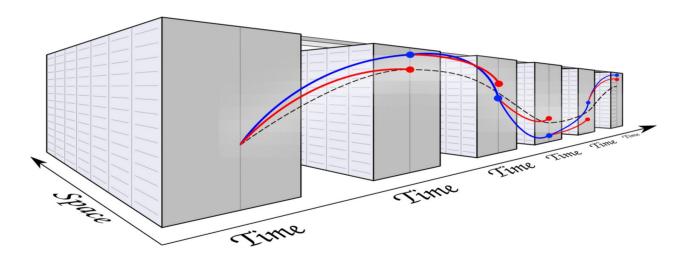
- ML-SDC:
 - ML-SDC only partially performing better
 - Small viscosity/filter required for stability reasons
- PFASST:
 - Parallel-in-time
 - PFASST is eventually Pareto optimal for all time step sizes

Future work

- Use PFASST with
 - Exponential and
 - Lagrangian methods
- And plenty of side tracks to get this into PFASST (e.g. EXP-SL)

Thank you for your time

May the time be with you (in parallel!)



I'm available for any questions