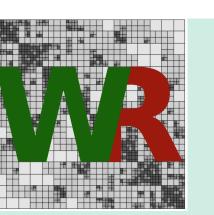


# Quadrature-free Discontinuous

# FRIEDRICH-ALEXANDER ERLANGEN-NÜRNBERG



# Galerkin Formulation for Shallow-water **Equations with Code Generation Features**



Sara Faghih-Naini <sup>a, b, \*</sup>, Vadym Aizinger <sup>a</sup>, Sebastian Kuckuk <sup>b</sup>, Daniel Zint <sup>C</sup>, Harald Köstler <sup>b</sup> and Roberto Grosso <sup>C</sup>

- <sup>a</sup> University of Bayreuth, Scientific Computing; \* Sara.Faghih-Naini@uni-bayreuth.de
- <sup>b</sup> Friedrich-Alexander-University Erlangen-Nuremberg (FAU), System Simulation; <sup>c</sup> FAU, Computer Graphics

#### Ocean Circulation Models

- Discontinuous Galerkin (DG) method for higher order and accuracy
- Novel quadrature-free scheme for better performance
- Automated code generation for better performance, productivity and portability
- Generated block-structured grids for realistic ocean domains

## 2D Shallow-water Equations <sup>1</sup>





 $\xi$ : elevation of the free water surface,  $h_b$ : bathymetric depth,

 $H = h_b + \xi$ : total fluid depth,  $f_c$ : Coriolis parameter, k: local vertical vector,

 $U = (U, V)^T$ : depth integrated horizontal velocity field,

F: forcing term, g: gravitational acceleration,  $\tau_{bf}$ : bottom friction coefficient

## Modification of the System for Quadrature-free Integration with $\mathrm{c}:=(\xi,U,V)^{T}$

Compact representation of SWE in conservative form:

Compact representation of SWE in conservative form: 
$$\frac{\partial \boldsymbol{c}}{\partial t} + \nabla \cdot \begin{pmatrix} U & V \\ \frac{U^2}{H} + \frac{1}{2}g(H^2 - h_b^2) & \frac{UV}{H} \\ \frac{UV}{H} & \frac{V^2}{H} + \frac{1}{2}g(H^2 - h_b^2) \end{pmatrix} = \begin{pmatrix} 0 \\ -\tau_{bf}U + f_cV + g\xi\frac{\partial h_b}{\partial x} + F_x \\ -\tau_{bf}V - f_cU + g\xi\frac{\partial h_b}{\partial y} + F_y \end{pmatrix}$$
 Introducing depth averaged velocity field  $\boldsymbol{u} = (u, v)^T$ 

## Semi-discrete DG Formulation on $\Omega_e$

 $\{\mathcal{T}_{\Delta}\}_{h>0}$  triangulation of  $\Omega\subset\mathbb{R}^2$  with  $\Omega_e$  elements of  $\mathcal{T}_{\Delta}$ , discontinuous polynomial space  $\mathbb{V}_{\Delta}=\left\{ arphi_{\Delta}\in L^{1}(\Omega): \right\}$  $arphi \Big|_T \in \mathbb{P}_p(T), orall T \in \mathcal{T}_\Delta \Big\}$ ; seek  $c_\Delta \in (\mathbb{V}_\Delta)^3$ ,  $u_\Delta \in (\mathbb{V}_\Delta)^2$ , s. t. for  $t \in (t_0, t_{end})$ ,  $\forall \Omega_e \in \mathcal{T}_\Delta \ \forall \phi_\Delta \in (\mathbb{V}_\Delta)^3 \text{ and } \forall \psi_\Delta \in (\mathbb{V}_\Delta)^2$ :

 $(\partial_t oldsymbol{c}_\Delta, oldsymbol{\phi}_\Delta)_{\Omega_e} + \langle ilde{oldsymbol{A}}(oldsymbol{c}_\Delta, oldsymbol{u}_\Delta, oldsymbol{c}_h^+, oldsymbol{u}_\Delta^+; oldsymbol{n}), oldsymbol{\phi}_\Delta 
angle_{\partial\Omega_e}$  $\left(oldsymbol{ ilde{A}}(oldsymbol{c}_{\Delta},oldsymbol{u}_{\Delta}),
abla \phi_{oldsymbol{\Delta}}
ight)_{\Omega_e}=\left(oldsymbol{r}(oldsymbol{c}_{\Delta},oldsymbol{u}_{\Delta}),\phi_{oldsymbol{\Delta}}
ight)_{\Omega_e}$ 

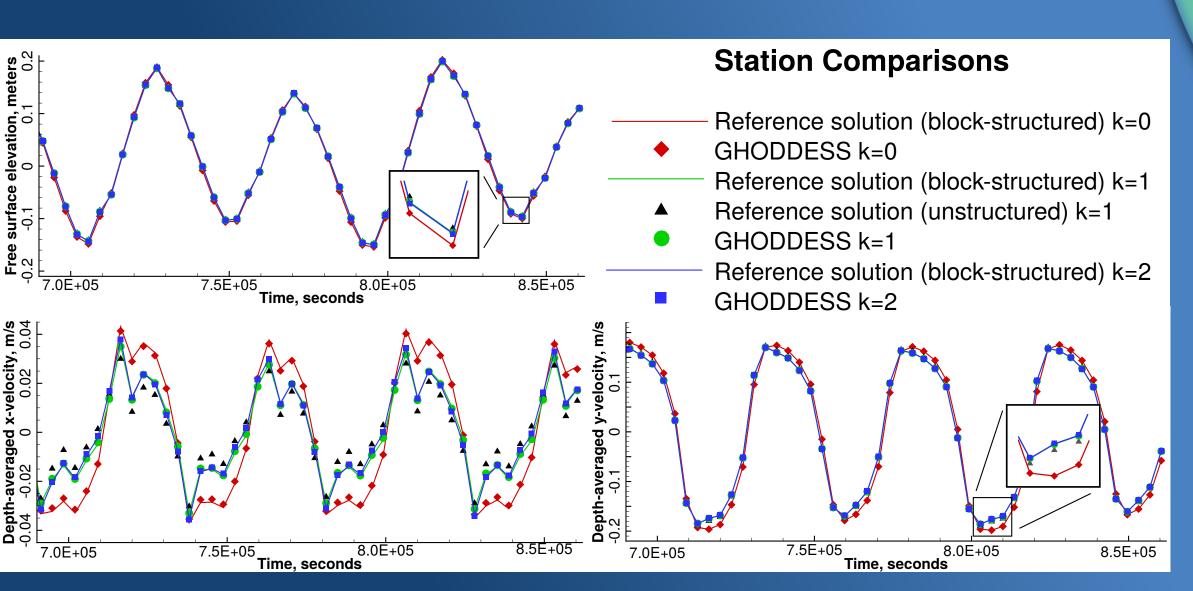
 $(oldsymbol{u}_\Delta \cdot H_\Delta, oldsymbol{\psi_\Delta})_{\Omega_e} = (oldsymbol{u}_\Delta H_\Delta, oldsymbol{\psi_\Delta})_{\Omega_e}$ 

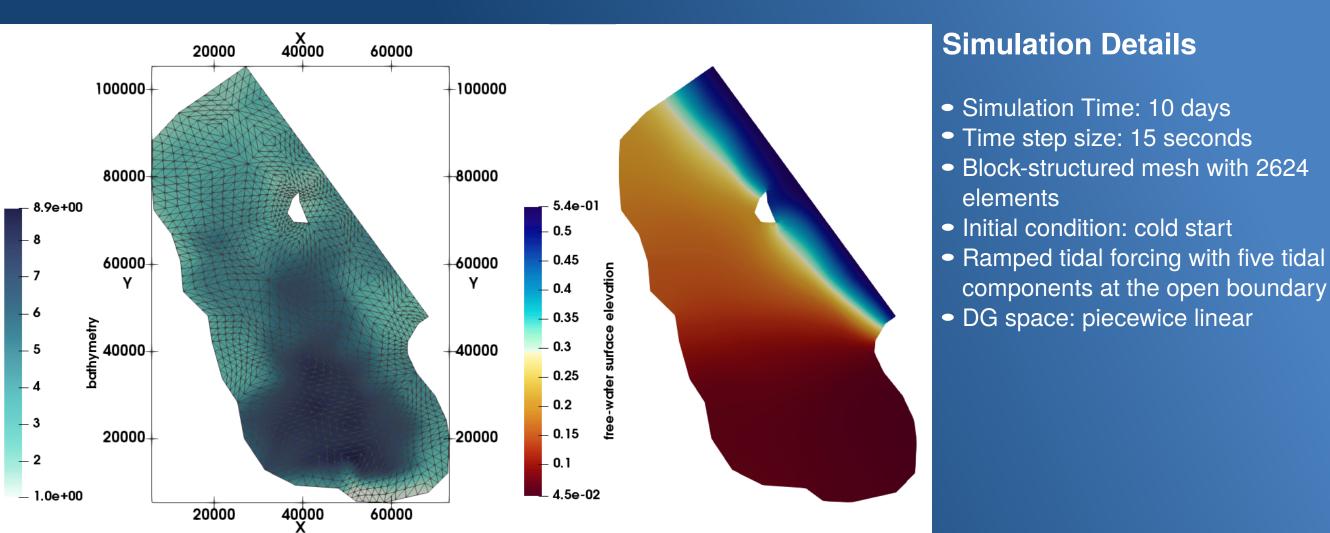
With Lax-Friedrichs flux  $\hat{ ilde{A}}(m{c}_\Delta,m{u}_\Delta,m{c}_\Delta^+,m{u}_\Delta^+;m{n}) := 0$  $rac{1}{2}\left(\left( ilde{m{A}}(m{c}_{\Delta},m{u}_{\Delta})+ ilde{m{A}}(m{c}_{\Delta}^{+},m{u}_{\Delta}^{+})
ight)\cdotm{n}+\left|\hat{\lambda}
ight|\left(m{c}_{\Delta}-m{c}_{\Delta}^{+}
ight)
ight)$ 

# **GHODDESS** (Generation of Higher-Order Discretizations Deployed as ExaSlang Specifications) <sup>2</sup>

- Uses Python library sympy (analytical differentiation and integral evaluation)
- Contains classes representing triangles and data fields

## **Tidal Flow near Bahamas**





simulation results

discrete

DG

formulation

executable

file

C++ code

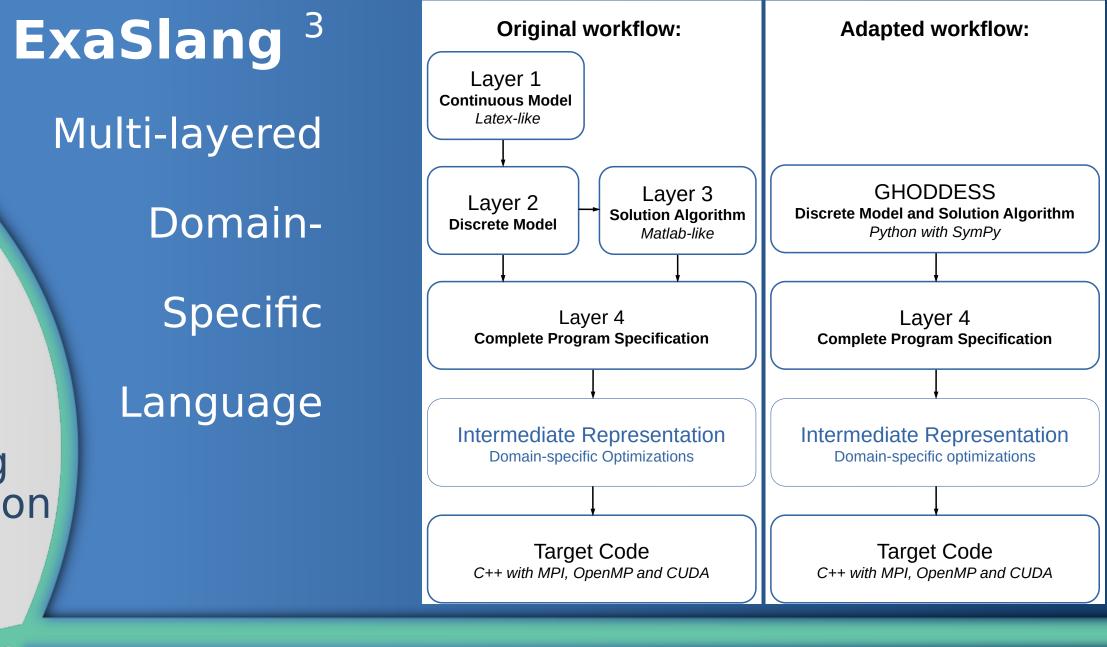
Python

specification

ExaSlang

specification

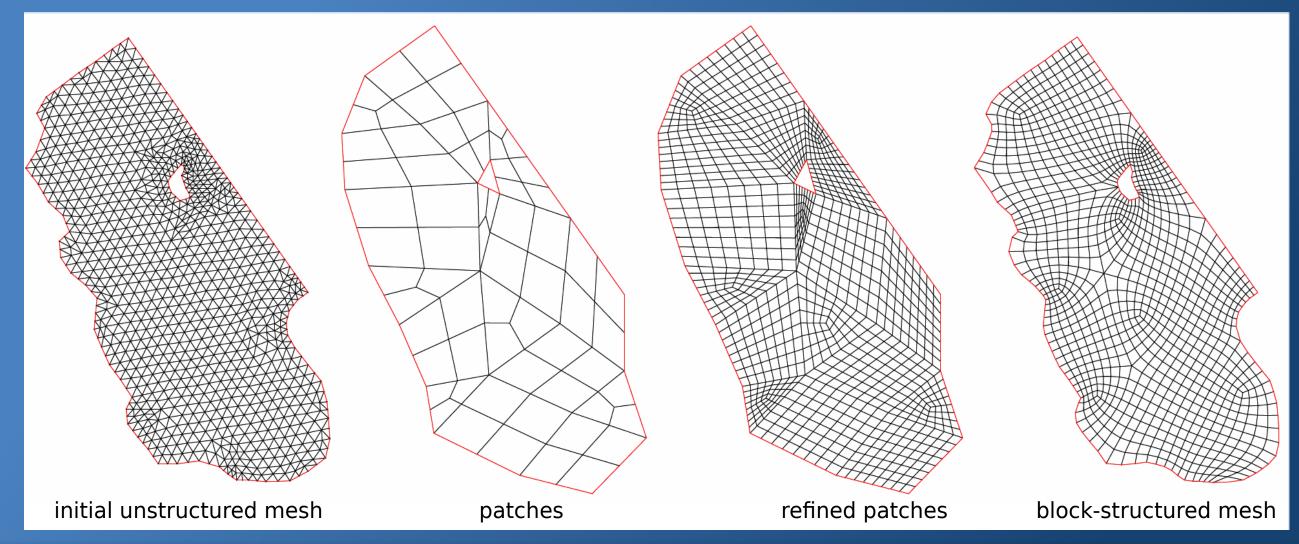
mesh



ExaStencils .....

- Efficient code generation for massively parallel applications
- Parsing ExaSlang code, transforming code elements for low-level optimizations
- Maps to C++ code with CUDA, MPI and OpenMP

#### **Generation of Block-structured Grids** 5



## **Current and Future work**

- Incorporate p-adaptivity into the quadrature-free formulation
- Scalability and performance on different hardware architectures
- Transfer approaches to 3D ocean models

## References

- 1 V. Aizinger and C. Dawson. "A discontinuous Galerkin method for two-dimensional flow and transport in shallow water". In: Advances in Water Resources
- 25.1 (2002) 2 S. Faghih-Naini, S. Kuckuk, V. Aizinger, D. Zint, R. Grosso, H. Köstler, "Quadrature-free discontinuous Galerkin method with code generation features for
- shallow water equations on automatically generated block-structured meshes". In: Advances in Water Resources 138 (2020)
- 3 S. Kuckuk. "Automatic Code Generation for Massively Parallel Applications in Computational Fluid Dynamics". PhD Thesis. (2019) 4 C. Lengauer, S. Apel, M. Bolten, A. Größlinger, F. Hannig, H. Köstler, U. Rüde, J. Teich, A. Grebhahn, S. Kronawitter, S. Kuckuk, H. Rittich, and C. Schmitt. ExaStencils: Advanced stencil-code engineering. In: Euro-Par 2014: Parallel Processing Workshops, volume 8806 of Lecture Notes in Computer Science. Springer. (2014)
- 5 D. Zint, R. Grosso, V. Aizinger, H. Köstler. "Generation of Block Structured Grids on Complex Domains for High Performance Simulation". In: Numerical Geometry, Grid Generation and Scientific Computing. Springer. (2019)