

Developing Weather and Climate Models in Python

Jeremy McGibbon
Al2 Climate Modeling Team
Lucas Harris, Rusty Benson (GFDL)

AI2 Climate Modeling: Who We Are

ML group

Chris Bretherton

DSL group

Noah Brenowitz

Anna Kwa

Oli Watt-Meyer Jeremy McGibbon Florian Deconinck Eddie Davis

Rhea George

Spencer Clark

Andre Perkins

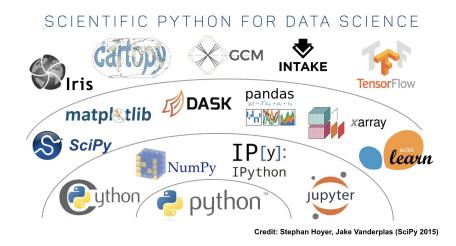
Brian Henn

Elynn Wu

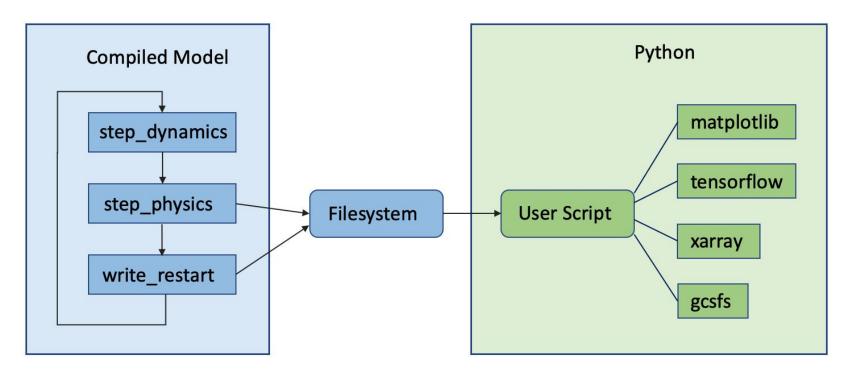
Johann Dahm

Oliver Elbert

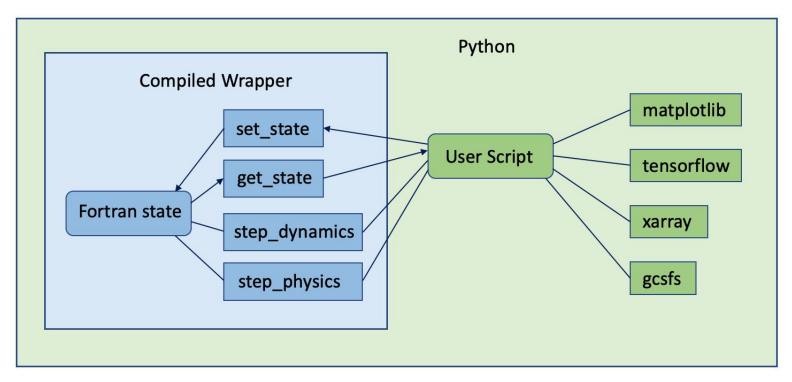
Tobias Wicky



Atmospheric Models in Python


Why do we use Python?

- Machine learning libraries
- Cloud file storage libraries
- Comfortable for all of our scientists
- Interactive execution
- Built-in introspection libraries



Many model users use Python

Online Python Modeling

fv3gfs-wrapper

Simple Python main loops provide a clear way to modify the model

```
import fv3gfs.wrapper

if __name__ == "__main__":
    fv3gfs.wrapper.initialize()
    for i in range(fv3gfs.wrapper.get_step_count()):
        fv3gfs.wrapper.step_dynamics()
        fv3gfs.wrapper.step_physics()
        fv3gfs.wrapper.step_intermediate_restart_if_enabled()
    fv3gfs.wrapper.cleanup()
```


Examples

Random forest

Can add online functionality by getting and setting the Fortran model state

```
import fv3gfs.wrapper
import fv3gfs.wrapper.examples
import f90nml
from datetime import timedelta
if __name__ == "__main_":
    # load timestep from the namelist
    namelist = f90nml.read("input.nml")
    timestep = timedelta(seconds=namelist["coupler nml"]["dt atmos"])
    # initialize the machine learning model
    rf model = fv3qfs.wrapper.examples.get random forest()
    fv3qfs.wrapper.initialize()
    for i in range(fv3gfs.wrapper.get step count()):
        fv3qfs.wrapper.step dynamics()
        fv3qfs.wrapper.step_physics()
        # apply an update from the machine learning model
        state = fv3gfs.wrapper.get_state(rf_model.inputs)
        rf_model.update(state, timestep=timestep)
        fv3gfs.wrapper.set_state(state)
        fv3gfs.wrapper.save_intermediate_restart_if_enabled()
    fv3qfs.wrapper.cleanup()
```


MPI-Enabled

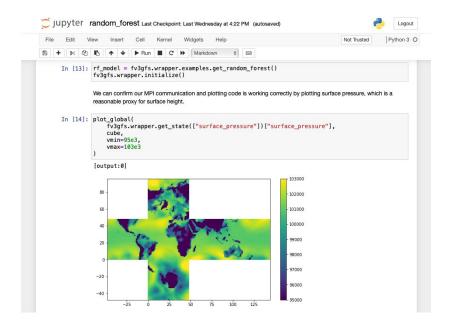
MPI for Python (mpi4py) for distributed-memory parallelism

```
import fv3gfs.wrapper
import numpy as np
from mpi4py import MPI
ROOT = 0
if __name__ == "__main__":
    fv3gfs.wrapper.initialize()
   # MPI4py requires a receive "buffer" array to store incoming data
   min_surface_temperature = np.array(0.0)
    for i in range(fv3gfs.wrapper.get_step_count()):
        fv3gfs.wrapper.step_dynamics()
        fv3gfs.wrapper.step_physics()
        # Retrieve model minimum surface temperature
        state = fv3gfs.wrapper.get_state(["surface_temperature"])
        MPI.COMM WORLD.Reduce(
           state["surface_temperature"].view[:].min(),
           min_surface_temperature,
           root=ROOT,
           op=MPI.MIN,
        if MPI.COMM_WORLD.Get_rank() == ROOT:
           units = state["surface_temperature"].units
           print(f"Minimum surface temperature: {min surface temperature}
            {units}")
        fv3gfs.wrapper.save_intermediate_restart_if_enabled()
    fv3qfs.wrapper.cleanup()
```


Overhead is minimal

Example	Runtime (s)
Fortran baseline	110
Wrapper baseline	110
Random forest	116
Minimum surface pressure	110

6h simulation time at C48 on 2019 Macbook Pro



Developing in Python

MPI-Parallel Jupyter Notebooks

- Everything we've seen can be run in a Jupyter notebook
- Useful for communicating/learning
- Scientifically evaluate model components


```
pytest test.py
```

```
pytest test.py --pdb
```

```
def test_nonnegative_model_outputs():
    hyperparameters = DenseHyperparameters(
        ["input"], ["output"], nonnegative_outputs=True
    model = DenseModel("sample", ["input"], ["output"], hyperparameters,)
    batch = xr.Dataset(
            "input": (["x"], np.arange(100)),
            # even with negative targets, trained model should be nonnegative
            "output": (["x"], np.full((100,), -1e4)),
    model.fit([batch])
    prediction = model.predict(batch)
    assert prediction.min() >= 0.0
```


pytest test.py

pytest test.py --pdb

```
np.testing.assert_almost_equal(result, reference)
      AssertionError:
      Arrays are not almost equal to 7 decimals
       ACTUAL: <tf.Tensor: shape=(), dtype=float32, numpy=8.0>
       DESIRED: 7.0
tests/test_loss.py:177: AssertionError
>>>>>>>> PDB post_mortem (IO-capturing turned off) >>>>>>>>>>
> /Users/jeremym/python/fv3net/external/fv3fit/tests/test_loss.py(177)test_weighted_mae()
-> np.testing.assert_almost_equal(result, reference)
(Pdb) h
Documented commands (type help <topic>):
FOF
               down
                                       return tbreak
      clear
               enable
                                                       whatis
                       jump
                                       retval u
alias commands exit
                                              unalias
                                                       where
                                       run
aras condition h
                       list
                                              undisplay
               help
                                quit
                                              unt
break disable
               ianore
                       lonalist r
                                       source until
      display
               interact n
                                restart step
Miscellaneous help topics:
exec pdb
Undocumented commands:
c cont continue debug
```


- Unit tests make debugging very fast
- Removes fear of breaking things, even with many developers
- Tests are examples of how to use the code
- Can add --pdb to get a debugging terminal whenever a test fails

```
def test_nonnegative_model_outputs():
    hyperparameters = DenseHyperparameters(
        ["input"], ["output"], nonnegative_outputs=True
)
    model = DenseModel("sample", ["input"], ["output"], hyperparameters,)
    batch = xr.Dataset(
        {
            "input": (["x"], np.arange(100)),
            # even with negative targets, trained model should be nonnegative
            "output": (["x"], np.full((100,), -1e4)),
        }
    )
    model.fit([batch])
    prediction = model.predict(batch)
    assert prediction.min() >= 0.0
```


With Python, Google is your friend

Introspection tools

- Built-in libraries for code analysis (inspect, ast)
- Well-tested templating libraries developed for HTML generation can be used for code generation (e.g. Jinja)

```
import ast
import inspect

def func():
    a = 1
    return a

source = inspect.getsource(func)
# code -> abstract syntax tree
tree = ast.parse(source)
```

For more introspection magic: http://hackflow.com/blog/2015/03/29/metaprogramming-beyond-decency/

Stay tuned: Pace

- Re-writing FV3/GFS/SHiELD in Python-based DSL gt4py
- Early results presented by Oliver Fuhrer earlier in this session
- Unified code base for CPU and GPU hardware
- Will be presented at AMS 2021 Annual Meeting

Thank You!

