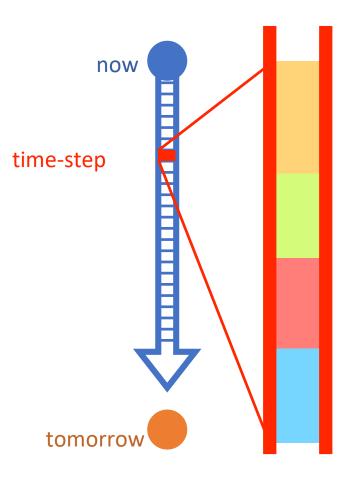


ESCAPE 2: Energy-efficient Scalable Algorithms for Weather and Climate Prediction at Exascale

Andreas Mueller, Giovanni Tumolo, Willem Deconinck, Nils Wedi, Peter Bauer, et al.

ECMWF (European Centre for Medium-Range Weather Forecasts)



components:

time-stepping

challenges:

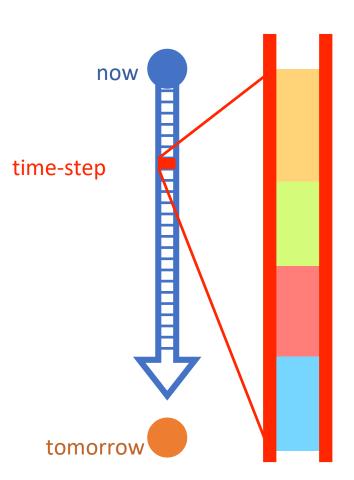
communication, memory

advection

halo-communication

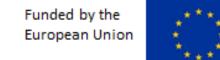
gradient computation

expensive calculations


physics

expensive calculations

Dwarfs of ESCAPE 2



		/	an	mosph	Sio,	gional	1	g /	M
components:	options:	/ c	cean at	4	obal re		27.7 0	7.6/118	CM
discretisation	spectral transform*		✓	/	✓			/	
	finite volume	/	/	✓	/			✓	
	discontinuous Galerkin	>	✓	/	✓		✓	/	
time-stepping	multigrid elliptic solver	\	✓	/	/	/			
	fault tolerant elliptic solver	/	/	/	/		/		
	horizontal explicit, vertical implicit	>	✓	✓	✓			✓	
advection	semi-Lagrangian		✓	✓	/	/		/	
	MPDATA*	\	✓	/	/	✓		/	
	MUSCL	>	✓	/	✓	✓		/	
physics	CLOUDSC microphysics*		✓	/	✓	/		/	
	ecRad radiation		✓	/	✓			✓	
	ACRANEB2 radiation*		✓	/	✓	✓		/	
	machine learned radiation		/	/	✓		/		

grey: work in progress, *from ESCAPE 1

work-steps for each dwarf: isolation into self-contained prototype, documentation, adaptation to different hardware, maintenance of repo

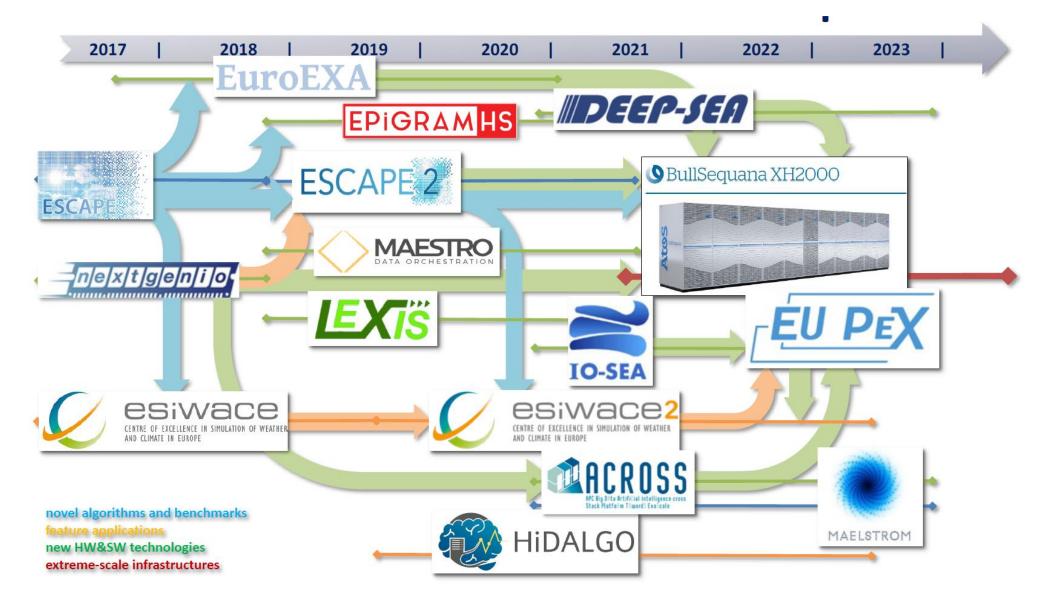
Dwarfs of ESCAPE 2

HPCW: Suite of weather and climate prediction benchmarks

		/	an	mosph	Nal Sto	gional	1	9	(h)
components:	options:	/ c	cean at	.u.\ \$	obal re	%/<	27.7 0	1.8 /H	Ch
discretisation	spectral transform*		✓	/	✓			/	
	finite volume	/	✓	/	✓			✓	
	discontinuous Galerkin	>	✓	/	✓		✓	/	
time-stepping	multigrid elliptic solver	\	✓	/	/	/			
	fault tolerant elliptic solver	/	/	/	✓		/		
	horizontal explicit, vertical implicit	\	✓	✓	✓			✓	
advection	semi-Lagrangian		✓	/	/	/		✓	
	MPDATA*	/	✓	/	✓	/		/	
	MUSCL	\	✓	/	✓	/		/	
physics	CLOUDSC microphysics*		✓	/	✓	/		/	
	ecRad radiation		✓	/	✓			/	
	ACRANEB2 radiation*		✓	/	✓	/		✓	
	machine learned radiation		✓	/	/		✓		

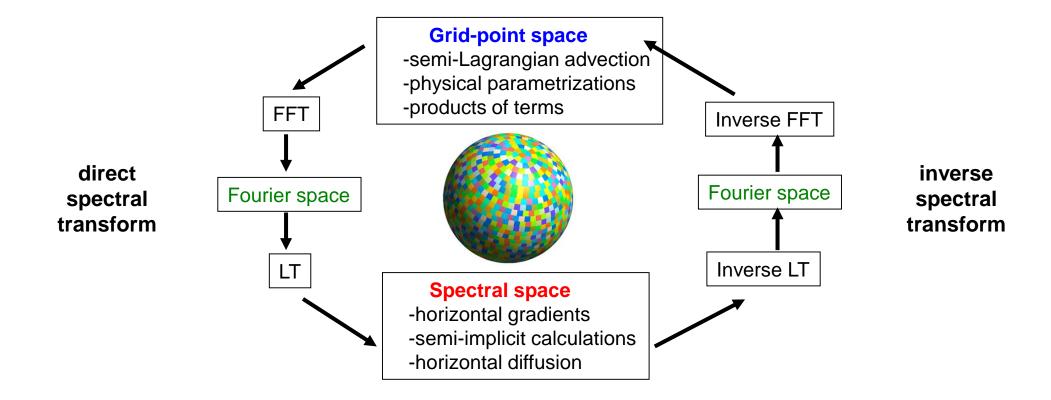
grey: work in progress, *from ESCAPE 1

work-steps for each dwarf: isolation into self-contained prototype, documentation, adaptation to different hardware, maintenance of repo


Research done in ESCAPE 2

- science: semi-Lagrangian Discontinuous Galerkin (see presentation by Stella and Giovanni on Wednesday), fault tolerant solvers (presentation by Tommaso on Thursday), machine learning
- domain specific language: developed high-level intermediate representation
- VVUQ: collaboration with CEA and their software package URANIE

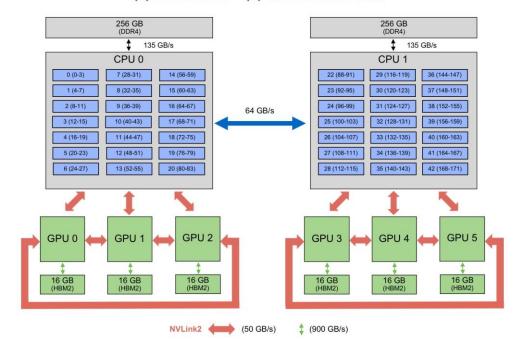
DSL Frontends **Software Managed** Checkers **Python DSL Caches** Read Frontend before write **Full vertical** Generator **Naive C/Fortran** parallelization Optimizers **Missing Update** Generator Specific **Boundary** clang DSL Stage **High-Level** (C++) **Fusion Data dependency Optimized** Code race conditions **GridTools Generator Data Locality** Domain **Exploit CLAW DSL Out of Bounds** (Fortran) Strong/Weak **Stencil Access Scaling Optimizer**


Weather & climate roadmap

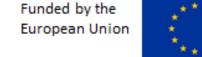
Spectral transform cycle for each timestep of the IFS

FFT: Fast Fourier Transform, LT: Legendre Transform

GPU version of the spectral transform


• History:

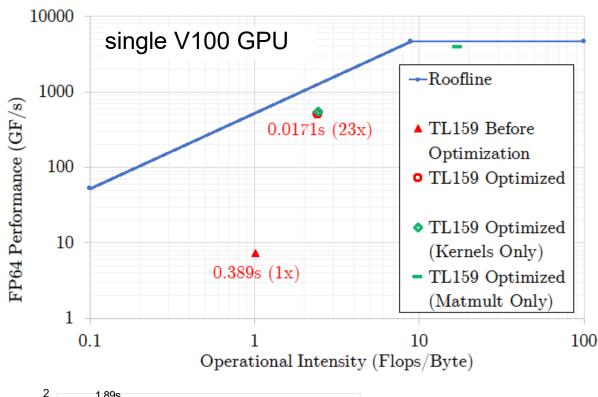
- 2014-2015: George Mozdzynski creates first GPU port of trans library and performs tests on Titan as part of the CRESTA project
- 2017-2018: Alan Gray (NVIDIA) rewrites George's version as part of the ESCAPE project
- since 2019: extending functionality of Alan's GPU version and making it work inside RAPS with lots of help from Nils Wedi, Alan Gray, Wayne Gaudin, loan Hadade, Sam Hatfield

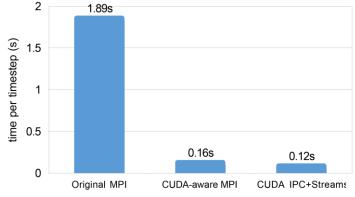

Current status:

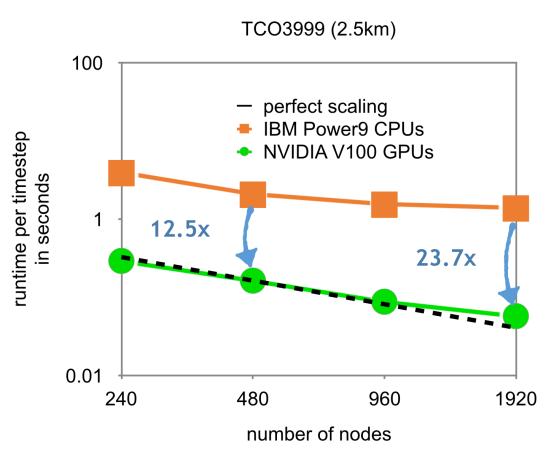
- focused so far on making it run inside RAPS (benchmarking version of IFS) at 1km resolution on Summit
- mostly followed the strategies introduced by Alan Gray in the dwarf
- work in progress, far from being finished

Summit Node (2) IBM Power9 + (6) NVIDIA Volta V100

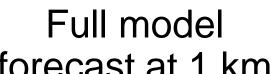
Spectral transform with GPUs in IFS

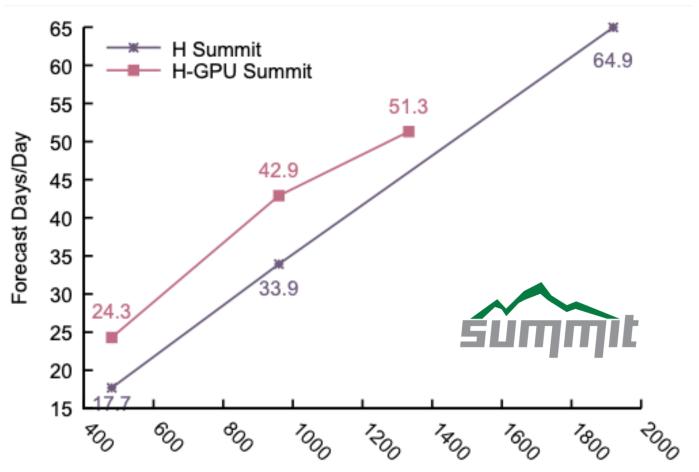

	RAPS on CPU	ESCAPE1 dwarf on GPU	RAPS on GPU			
single precision	yes	no	yes			
compiler	IBM	NVIDIA	NVIDIA			
processor	everything on CPU	entire transform on GPU (CPU only printing norms)	SGEMM and FFT on GPU, reordering of data on CPU			
programming standards	MPI + OpenMP	MPI + OpenACC + CUDA (GEMM+FFT)	MPI + OpenMP + OpenACC + CUDA (GEMM+FFT)			
parallelisation	OpenMP over zonal wavenumbers (entire Legendre transform)	loop over zonal wavenumbers in innermost functions to parallelize them with OpenACC => changed data layout				
CUDA-aware MPI		yes	<u>no</u>			
can run 1km on Summit	yes	no	yes (<u>multiple trans calls</u>)			
levels distributed	yes	not used => max 1333 nodes (7998 GPUs) at 1km				


red underlined: temporary limitation which we are currently working on

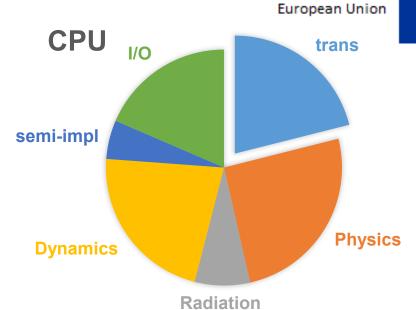

Speedup for scalar transforms in ESCAPE1 dwarf

huge speedup with CUDA-aware MPI on 4 DGX-1V

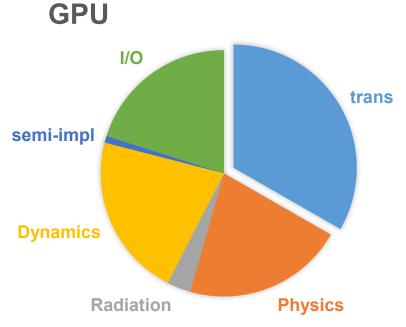




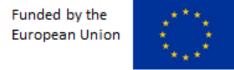
This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE office of Science User Facility supported under contract DE-AC05-000R22725.



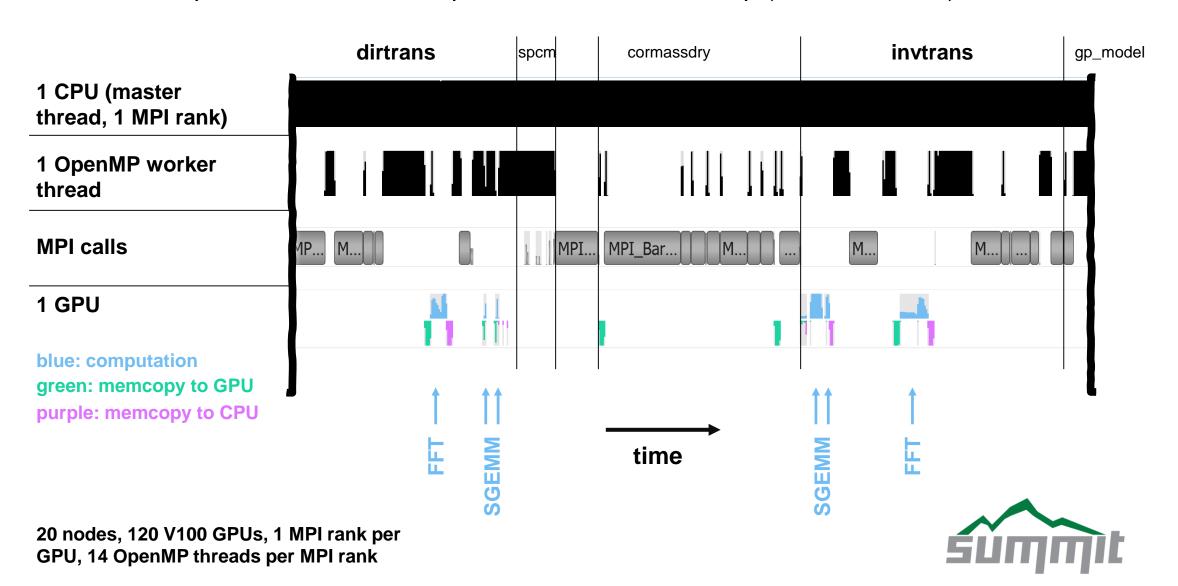
forecast at 1 km



Compute nodes (Summit x42 cores / Summit x42 cores +6 GPUs)



Funded by the



spectral transform computations of one time-step (9km resolution)

Outlook for spectral transform on GPUs

Ongoing tasks

- optimisation of GPU version in the full model
- exploring Fast Legendre Transform on GPU to reduce memory footprint

Next tasks

- try MAGMA library (provides batched GEMM without padding matrices and provides internal computations in half precision)
- bring tangent linear and adjoint model parts of the transform to GPU

Open questions

- How much GPU memory will other parts of IFS need?
- What level of performance can the GPU version achieve on CPUs?