

DKRZ site news

Hendryk Bockelmann
Deutsches Klimarechenzentrum (DKRZ)

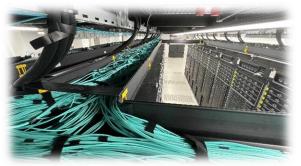
HLRE History

2002 HLRE-1 NECSX-6 Hurrikan 1,5 TeraFLOPS 60 TByte disk

100x compute 100x storage 2009 HLRE-2 IBM Power6 Blizzard 158 TeraFLOPS 6 PByte disk

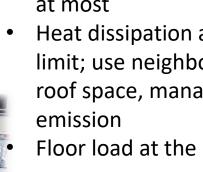
20x compute 8x storage 2015 HLRE-3 Atos bullx B700 Mistral 3 PetaFLOPS

50 PByte disk



2021 HLRE-4 Atos XH2000 Levante

Hendryk Bockelmann (DKRZ) 21.09.2021



Under Construction ...

But since DKRZ is located in the middle of Hamburg:

- Energy supply up to 4MW at most
 - Heat dissipation at the limit; use neighbouring roof space, manage noise emission
 - Floor load at the limit

HPC by Atos XH2000 BullSequana

HPC system 'Levante'	
CPU-nodes (AMD EPYC Milan 7763, 128 cores)	~2800 ca. 14,2 PFLOPS
GPU-nodes (as CPU nodes + 4*NVIDIA A100) Plus additional nodes in second phase	4 ca. 0,15 PFLOPS
Overall computing performance	ca. 16 PFLOPS ca. 5x improvement
Disk space (DDN)	120 PB ca. 2x improvement
Interconnect (NVIDIA Mellanox HDR)	200Gb/s ca. 4x improvement
Power consumption (incl. tape archive)	3,1 MW ca. 2x "improvement"

HSM by StrongLink (StrongBox Data Solutions)

HPC 5x higher production rate but just doubling of disk

- ⇒ New HSM system with key metrics
- Total capacity ready for 1.000 PB (1 EB)
- Annual throughput of 120 PB possible
- Max throughput rate 15 GB/s
- 1,2 PB disk cache
- 11 StrongLink nodes instead of 1 HPSS server for higher reliability
- Management of up to 2 billion objects + user defined MetaData

Room for Extension ... What About GPUs?

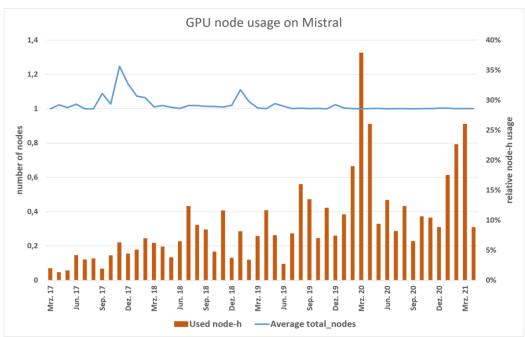
Do we need a GPU-based system?

Does it pay off?

⇒ Cooperation between Atos, DKRZ and power users

Results:

The Good, the Bad and the Ugly



What About GPUs?

The Ugly (or definitely NO)

 Apart from ICON-A there is no other code of DKRZ users ready for GPUs yet ...

 Already current system 'Mistral' (since 2015)
has 20 GPU-nodes to
prepare codes but ...

What About GPUs?

The Bad (or MAYBE)

- ML as a new use case ... still mostly just single GPU/node
- Programming paradigms ... hard to predict future
 - OpenACC, OpenMP, ...
 - DSL or other frameworks like GridTools, kokkos, ...
 - NVIDIA, AMD and Intel GPUs?

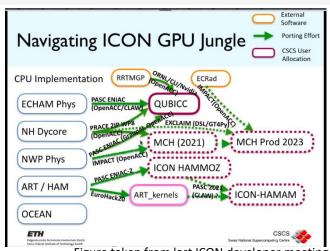
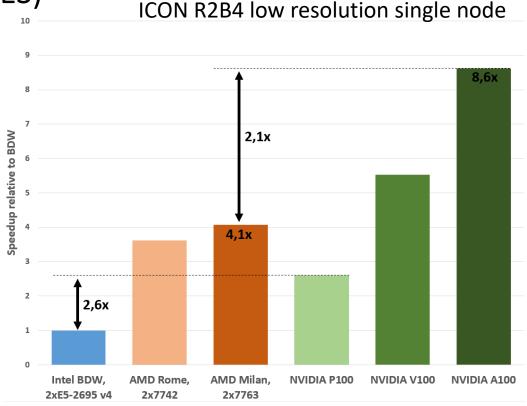



Figure taken from last ICON developer meeting

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)


Taken from https://xkcd.com/927/

What About GPUs?

The Good (or definitely YES)

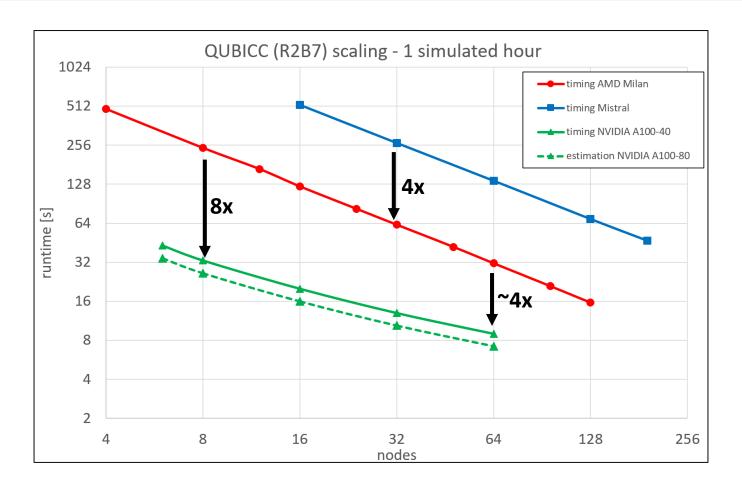
- ICON atmosphere can be used
- Lower energy consumption of GPUs is promising

Hendryk Bockelmann (DKRZ)

Technical Comparison CPU-GPU Nodes

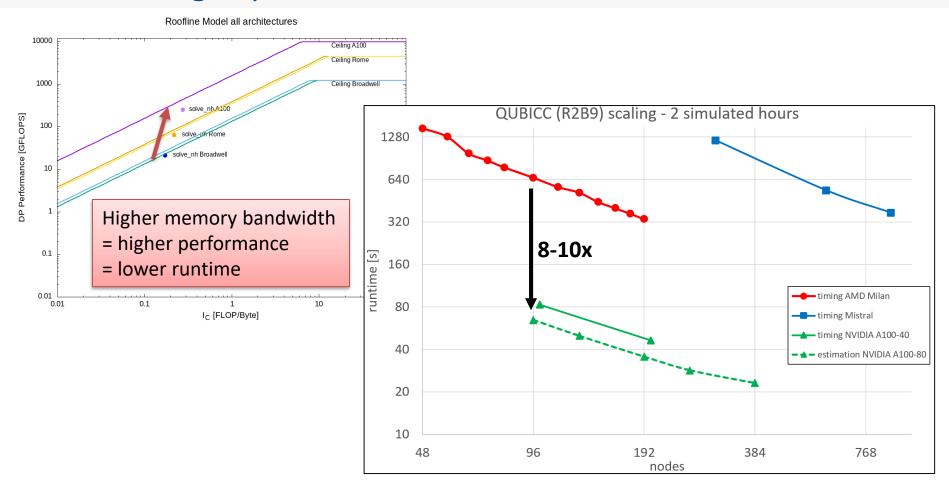
Based on well-known ICON-A experiments (only)

- Low resolution (R2B4, R2B7) SLAM and QUBICC for principle analysis and scalability
- High resolution (R2B9) QUBICC for throughput experiments


Systems compared: Mistral (Intel BDW), Piz Daint (NVIDIA P100), Spartan/Atos (AMD Milan), JUWELS booster (NVIDIA A100)

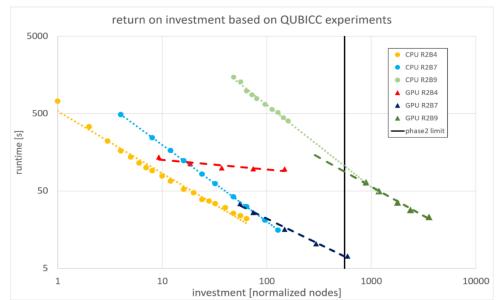
⇒ drawing a clear picture on what we can get out of phase2 as
GPU or CPU

Hendryk Bockelmann (DKRZ)


ICON Scaling Experiments

12

ICON Scaling Experiments



Hendryk Bockelmann (DKRZ) 21.09.2021

13

Return on Investment

General observation:

 GPUs use 40-50% less energy at same runtime if code saturates GPUs

Limitations:

- ICON R2B9 would **not** fit into 74 nodes with A100-40
- NVIDIA showed 39 nodes with A100-80 would work

	CPU	GPU A100-80	GPU A100-40
R2B7 SYPD	0.94 @192 nodes	0.95 @32 nodes	0.76 @32 nodes
#nodes for 1 SYPD	204	34	42
Energy for 1 SYPD	2942 kWh	1701 kWh	2125 kWh
SYPD on whole phase2	2.72	1.78	1.75

Hendryk Bockelmann (DKRZ) 21.09.2021

Outcome and Issues

- 9:1 exchange rate underlines the value of GPU nodes
 - Must be used from day 1, but code porting is high effort
- Majority of our users will benefit more from CPUs (capacity computing)
- NVIDIA A100-80 is well suited for high-res climate codes, if codes are ported (capability computing)
- Lower inlet temperature for GPU blades require active cooling
 - It remains to be seen whether full energy advantage is maintained
- ⇒ Compromise: Get one rack of GPU nodes for porting/preparing codes for Exascale EuroHPC system and ML