

Feedback between GSICS and NWP Community on Radiometric and Spectral Biases

Tim Hewison (EUMETSAT)

On behalf of

GSICS Research Working Group

- Introduction to GSICS
 - and GSICS products
- Radiometric Biases
- Spectral Biases
- Reference Observations
- Discussion Points

- Introduction to GSICS
 - and GSICS products
- Radiometric Biases
- Spectral Biases
- Reference Observations
- Discussion Points

Global Space-based Inter-Calibration System

What is GSICS?

- Global Space-based Inter-Calibration System
- Initiative of CGMS and WMO: gsics.wmo.int
- Effort to produce consistent, well-calibrated data from the international constellation of Earth Observing satellites

What are the basic strategies of GSICS?

- Improve on-orbit calibration by developing an integrated inter-comparison system
 - Initially for GEO-LEO Inter-satellite calibration
 - Being extended to LEO-LEO
- Best practices for calibration & characterisation

This will allow us to:

- Improve consistency between instruments
 - Towards Interoperability
- Reduce bias in Level 1 and 2 products
- Support Cal/Val of new instruments
- Provide traceability of measurements
- Retrospectively re-calibrate archive data
- Better specify future instruments

GSICS Principles

Systematic generation of inter-calibration products

- for Level 1 data from satellite sensors
- to compare, monitor and correct the calibration of monitored instruments to community references
- by generating calibration corrections on a routine operational basis
- with specified uncertainties
- through well-documented, peer-reviewed procedures
- based on various techniques to ensure consistent and robust results

Delivery to users

- Free and open access
- Adopting community standards

GSICS Products

- Currently empirical corrections to operational calibration coefficients (or alternative cal coeffs)
 - Defined in Radiance-space (could also be spectral)
- Promote greater understanding of instruments' calibration, by analysing the root causes of biases
- Allow Inter-operability:
 - Near real-time application for more accurate weather forecasting products
 - Re-Analysis application for improved understanding of climate processes
 - Re-Calibration of archive data to generate Fundamental Climate Data Records

Traceability = Unbroken Chain of Comparisons with Associated Uncertainties

EUMETSAT

GSICS Corrections for GEO imagers' IR channels

DIRECT INTER-CALIBRATION

Collocate in Space, Time, Angle

- Collect Simultaneous Nadir Overpasses (SNOs)
- Tie to contemporary reference instrument
- with very small uncertainty
- Hyperspectral Reference (IASI)
- Convolve IASI spectrum with Spectral Response Function (SRF) of monitored instrument
- Can diagnose SRF errors

Compare

- Apply weighted regression to collocated radiances
- Evaluate uncertainties

Generate GSICS Correction

- Update daily
- Distribute via GSICS Servers
 Evaluate & Monitor Bias

GSICS Calibration of GEO imagers' VIS/NIR channels

INDIRECT INTER-CALIBRATION, using

- Pseudo Invariant Calibration Targets (PICTs) = DCCs + Moon + Sites (PICS) + ...
- To transfer calibration from single reference instrument
 - Currently NOAA-20/VIIRS
 - Using its observations over a static period (when reference calibration is stable)
- But no suitable hyperspectral reference covering full VIS/NIR band
 - Need Spectral Band Adjustment Factors (SBAFs)
- Uncertainties derived from time series statistics of invariant targets' observations
 - Difficult to propagate uncertainties through RTMs
- GSICS Calibration for GEO imagers' VIS/NIR channels = Blend of methods:
- Deep Convective Cloud (DCC)
 - Globally available in equatorial band
 - Selected based on IR, SZA, VZA thresholds Invariant Reflectance up to ~1 μ m
 - Long-term stability unknown needs monitoring
- Moon
 - Based on GSICS Implementation of ROLO lunar irradiance model (GIRO)
 - Applicable between 350 and 2500nm, Phase angles $\sim \pm (2-90)^{\circ}$
- Still under development may be complemented by Ray-Matching methods

EUMETSAT

- Introduction to GSICS
 - and GSICS products
- Radiometric Biases
- Spectral Biases
- Reference Observations
- Discussion Points

Radiometric Calibration Dependences

- For GEO imagers, GSICS corrections only depend on scene radiance and time
 - Vary slowly based on ~monthly rolling window
- In general the radiometric biases can also be functions of
 - date, time of day,
 - instrument scan and solar geometry, latitude, longitude,
 - radiance, airmass, water vapour burden, scene type (including polarisation),
 - ...
- Diagnose the sensitivity of instrument's calibration to these
- Similar to NWP bias correction schemes
- Some bias variations may be due to the instrument's calibration
 - Or reference instrument, inter-calibration algorithm, or NWP and/or RTM
 - Comparison of GSICS results and NWP biases can provide valuable insight

- Introduction to GSICS
 - and GSICS products
- Radiometric Biases
- Spectral Biases
- Reference Observations
- Discussion Points

Radiometric – or Spectral Errors?

- GSICS focused on characterising errors as radiometric biases
- Some cases better explained as errors in spectral space
 - e.g. due to modification of SRF (Spectral Response Function)
- e.g. Meteosat/SEVIRI 13.4µm bias
- Varies with time
- Due to ice contamination
- Ice libration band modifies SRF
- Appears as radiometric bias
- Users preferred correction in radiance-space (still?)
 - No need to update RTMs

Time Series of Bias in Meteosat-10/SEVIRI IR13.4 channel from GSICS Re-Analysis Correction for standard scene (267K) based on inter-calibration with Metop-B/IASI. From GSICS Plotting Tool: gsics.tools.eumetsat.int/plotter

GSICS – SRF Updates

- GSICS was instrumental in refining SRFs for IR channels of GOES & AMI imagers
 - By optimising differences in intercomparison with hyperspectral reference instrument
 - During Commissioning
 - Important test
- GSICS investigating SRF retrievals
 - Based on comparison with hyperspectral ref
 - At least for non-window channels

GOES-13 Imager Channel 6 SRFs, (blue) original and (red) revised from the instrument vendor, and (green) NOAA-recommended SRF, superimposed on (black) AIRS spectral radiance. From Wu & Fu 2013, <u>10.1109/TGRS.2012.2236100</u>

Importance of Accurate SRFs

- SRFs are often approximated as *top-hats*
 - (shaded cyan areas)
- Real SRFs often differ significantly
 - (Blue outlines)
- Sometimes extent beyond protected microwave bands
 - Expose channels to Radio Frequency Interference
- Top hat approx. and inaccurate SRFs
 - can introduce large biases in RTM
 - Illustrated by this trial
 - Shows a significant impact in First⁴ Guess
 - (from David Duncan, ECMWF)

Fig. courtesy of David Duncan (ECMWF)

14 EUM/RSP/VWG/20/1199502, v1 Draft, 28 October 2020

CGMS action on Provision of Accurate SRFs

- CGMS-48-WMO-WP-04 paper
 - by S. English:
- Provision of precise spectral response functions (SRFs) for microwave and infrared instruments has been a CGMS Best Practice since CGMS-44
- Accurate SRFs are increasingly vital in the realm of spectrum management for microwave sensors
- New research shows potential benefits for NWP when accounting for measured SRFs on microwave sensors
- The paper reaffirms the worth of sharing SRF information and encourages agencies to follow the CGMS best practice

- Actions proposed:
- CGMS Members to endeavour that accurate Spectral Response Functions (SRFs) for all microwave and infrared instruments are measured and made available as described in CGMS Best Practice
- CGMS Members can also make available validated SRFs together with uncertainty information on their instrument calibration landing pages. Additionally, a document summarizing currently available SRFs and their status/accuracy as well as identifying any missing information can be provided
- WMO could establish links to this information through the relevant instrument entries in the OSCAR/Space database

SRF Uncertainties

- CLARREO studies showed inter-calibration uncertainty can be dominated by SRF uncertainties
- SRF Uncertainties may include:
 - Uncertainty in characterization
 - Estimated from error budgets
 - Typically assumed constant with λ
 - Dispersion among detectors
 - For instruments with multiple detectors
 - Varies with λ
 - Vector (- or matrix to include correlations?)
- For MTG-FCI: EUM aim to provide SRF uncertainties
 - to analyse sensitivity to these uncertainties
 e.g. on simulated radiances or L2 products
 - How to propagate into radiance space?
 - feedback required to ascertain whether SRF uncertainty information is sufficient
- For EPS-SG: MWI, ICI, MWS
 - Planning to provide SRF uncertainties TBD

Example Spectral Response Function for Meteosat Third Generation -Flexible Combined Imager 9.7µm channel – showing average SRF (green), uncertainty in its characterization (red) and dispersion of full range of SRFs over detector array (black). From Wu & Fu 2013, <u>10.1109/TGRS.2012.2236100</u>

- Introduction to GSICS
 - and GSICS products
- Radiometric Biases
- Spectral Biases
- Reference Observations
- Discussion Points

Benefits of SI-traceable Satellite Instruments

- SI-traceable Satellite Instruments
 - Such as CLARREO/TRUTHS
 - offer key advantages for NWP & Climate:
 - Provision of an irrefutable reference
 - Demonstrable traceability on-orbit calibration to SI
- Can be inter-compared with GSICS sensors
 - Tie GSICS products to an absolute scale
 - Diagnose reference instruments' sensitivity
- Can be assimilated without bias correction
 - To diagnose NWP and RT model errors
 - independent of instrument errors
 - As GNSSRO traceable to SI second

Use of an SI-Traceable Satellite instrument (SITSAT):

To tie GSICS inter-calibration products for a Monitored instrument (MON), based on comparisons a Reference Instrument (REF) to an absolute scale (green arrows)

Compare with other instrument's biases in NWP assimilation (blue arrows)

- Introduction to GSICS
 - and GSICS products
- Radiometric Biases
- Spectral Biases
- Reference Observations
- Discussion Points

Conclusions

- GSICS monitor biases by inter-comparisons with reference sensors
 - This inter-calibration will become increasingly important for small sat missions
 - Which often have limited on-board calibration capabilities
- GSICS and NWP can provide information on satellite instruments' biases
 - Radiometric or Spectral
 - Important to provide accurate SRF information
 - and associated uncertainty information
- Comparing GSICS and NWP results can help understand biases causes
 - and ultimately improve them at source
- Cooperative framework between GSICS and the NWP community
 - to exchange information on satellite instrument biases

