Estimation of model biases and the importance of scale separation

Patrick Laloyaux

Temperature bias in operation

4D-Var theory (strong-constraint 4D-Var)

If the model is assumed to be perfect (strong-constraint)

$$\mathbf{x}_k = \mathcal{M}_{k,k-1}(\mathbf{x}_{k-1}) \quad \text{for} \quad k = 1, \dots, N$$

Cost function depends only on the state at the beginning of the assimilation window

$$J(\mathbf{x}_{0}) = \frac{1}{2} \left(\mathbf{x}_{0} - \mathbf{x}_{0}^{b} \right)^{\mathrm{T}} \mathbf{B}^{-1} \left(\mathbf{x}_{0} - \mathbf{x}_{0}^{b} \right)$$
$$+ \frac{1}{2} \sum_{k=0}^{N} \left(\mathcal{H}_{k} \mathcal{M}_{k,0}(\mathbf{x}_{0}) - \mathbf{y}_{k} \right)^{\mathrm{T}} \mathbf{R}_{k}^{-1} \left(\mathcal{H}_{k} \mathcal{M}_{k,0}(\mathbf{x}_{0}) - \mathbf{y}_{k} \right)$$

4D-Var assumes random zero-mean errors in observations and in the model

4D-Var theory (strong-constraint 4D-Var)

VarBC has been designed to remove biases from instruments and radiative transfer models (estimating the systematic differences between the observations and model inside 4D-Var)

$$J(x_{0},\beta) = \frac{1}{2}(x_{0} - x_{b})^{T}\mathbf{B}^{-1}(x_{0} - x_{b})$$

$$+ \frac{1}{2}\sum_{k=0}^{K}[y_{k} - \mathcal{H}(x_{k}) - b(x_{k},\beta)]^{T}\mathbf{R}_{k}^{-1}[y_{k} - \mathcal{H}(x_{k}) - b(x_{k},\beta)]$$

$$+ \frac{1}{2}(\beta - \beta_{b})^{T}\mathbf{B}_{\beta}^{-1}(\beta - \beta_{b})$$

$$= \underbrace{\mathsf{Corrected fg departure}}_{\mathsf{Corrected fg departure}} \underbrace{\mathsf{Figure}}_{\mathsf{Figure}} \underbrace{\mathsf{Figure}}_{\mathsf{Vewing angle predictors}} \underbrace{\mathsf{Figure}}_{\mathsf{Figure}} \underbrace{\mathsf{Figure}} \underbrace{\mathsf{Figure}} \underbrace{\mathsf{Figure}} \underbrace{\mathsf{$$

Predictors are chosen to estimate observation biases (hopefully)

4D-Var theory (strong-constraint 4D-Var)

VARBC can potentially absorb model error into the observation correction (this will reinforce the bias in the analysis)

Developing the solution: weak-constraint 4D-Var

4D-Var theory (weak-constraint 4D-Var)

We assume that the model is not perfect, adding an error term η in the model equation

 $x_k = \mathcal{M}_k(x_{k-1}) + \eta$ for $k = 1, 2, \cdots, K$

The model error estimate η contains 3 physical fields

- temperature
- vorticity
- divergence

Constant model error forcing over the assimilation window

4D-Var theory (weak-constraint 4D-Var)

A

The different sources of biases are correctly attributed. This will produce an unbiased analysis

$$x_{k} = \mathcal{M}_{k}(x_{k-1}) + \eta \quad \text{for } k = 1, 2, \cdots, K$$
Observation bias
$$J(x_{0}, \beta, \eta) = \frac{1}{2}(x_{0} - x_{b})^{T}\mathbf{B}^{-1}(x_{0} - x_{b})$$

$$+ \frac{1}{2}\sum_{k=0}^{K}[y_{k} - \mathcal{H}(x_{k}) - b(x_{k}, \beta)]^{T}\mathbf{R}_{k}^{-1}[y_{k} - \mathcal{H}(x_{k}) - b(x_{k}, \beta)]$$

$$+ \frac{1}{2}(\beta - \beta_{b})^{T}\mathbf{B}_{\beta}^{-1}(\beta - \beta_{b})$$

$$+ \frac{1}{2}(\eta - \eta_{b})^{T}\mathbf{Q}^{-1}(\eta - \eta_{b})$$
The key to disentangle the biases is to specify correctly the covariance matrices
$$Model \ bias$$

$$Model \ bias$$

Specification of model error covariance matrix Q

Difference between RO temperature retrievals and first-guess temperatures (70hPa)

Model space (scale separation)

- B corrects the background and contains small scales
- Q corrects the model bias and contains large scales

Observation space

 Good choice of predictors to model observation errors

4D-Var corrects small scale errors (background errors) by changing the initial condition and large scale errors (model errors) by changing the model forcing

When is weak-constraint 4D-Var expected to perform well?

RESEARCH ARTICLE

Exploring the potential and limitations of weak-constraint 4D-Var

P. Laloyaux 🔀, M. Bonavita, M. Chrust, S. Gürol

First published: 15 August 2020 | https://doi.org/10.1002/qj.3891

WC4DVAR can accurately estimate the model bias and the initial state when

- background and model errors have different spatial scales
- the observing system is spatially homogeneous
- the observing system is unbiased

Study is done with a quasi-geostrophic model

Results of weak-constraint 4D-Var

Weak constraint 4D-Var captures the model error structure

Model bias estimated from GPS-RO temperature retrievals

Model correction estimated by weak constraint 4D-Var

The cooling is due to discretization errors in the vertical advection, associated with inadequate representation of resolved gravity waves in the vertical direction

Weak constraint 4D-Var is in operation

First time that weak-constraint 4D-Var works as expected in an operational NWP system

The last cycle (47R1) has implemented weak-constraint 4D-Var for the whole stratosphere (bias reduced up to 50%)

Do we need weak-constraint if we get more RO observations?

ECMWF started assimilating COSMIC-2 RO in March 2020

Interactions with the observation bias correction (VarBC)

First-guess departure and observation bias correction in AMSU-A channel 10

→ Observation bias correction is large in SC4DVAR (part of model bias is absorbed in VARBC). VarBC is much smaller in WC4DVAR

Tentative correction of medium-range forecasts

Weak-constraint 4D-Var in the stratosphere for

- HRES system
- EDA system

Model error estimate is prescribed in the ENS system (ensemble of 15day forecasts initialized from HRES and EDA)

		n.hem	s.hem	tropics
		crps	crps	crps
<u>ob z</u>	50			
	100			
	250			
	500			
	850			
ţ	50			
	100			
	250			
	500			
	850			
ff	50			
	100			
	250			
	500			
	850			
ŗ	200			
	700			

➔ Validity of a constant error forcing over 15 days is questionable

➔ A flow-dependent correction is probably more appropriate

How fast does weak-constraint 4D-Var learn?

mean [K]

Analysis departure (o-a) Background departure (o-b)

A pure Neural Network approach (in collaboration with NVIDIA)

Train Neural Networks on the NVIDIA high-performance GPU systems

Temperature first-guess error (wrt radiosondes)

- Database with ERA5 temperature background and RO background departure.
 3D convolutional neural networks trained on this database
- →Reduction in the mean error when correction is applied in 4D-Var. Comparison with weakconstraint 4D-Var is ongoing
- NN requires a large training dataset and needs to be retrained if the model is changing

Summary

1 "The presence of bias can be detected by monitoring differences between observations and their model equivalents"

2 "Separation of different bias sources requires additional information, such as hypotheses about the error characteristics"

3 "The algorithm learns, after the first few analyses, that the model forecast consistently overestimates or underestimates the observations."

1 <u>07</u> <u>05</u> <u>04</u> <u>03</u> <u>07</u> <u>024</u> <u>021</u> <u>016</u> <u>015</u> <u>012</u> <u>009</u> <u>006</u> <u>003</u> <u>002</u> <u>003</u> <u>006</u> <u>009</u> <u>012</u> <u>015</u> <u>016</u> <u>021</u> <u>024</u> <u>027</u> <u>03</u> <u>04</u> <u>05</u> <u>07</u> <u>1</u>

D. Dee, Bias and data assimilation, 2006.

Summary

Quarterly Journal of the Royal Meteorological Society

RESEARCH ARTICLE

Towards an unbiased stratospheric analysis

P. Laloyaux 🖾, M. Bonavita, M. Dahoui, J. Farnan, S. Healy, E. Hólm, S. T. K. Lang

First published: 05 April 2020 | https://doi.org/10.1002/qj.3798 | Citations: 3

Future work

- Investigate how to extend weak-constraint 4D-Var in the troposphere
- Produce a fair comparison with a pure Neural Network approach
- Provide a better understanding on the impact for VarBC

Thank you!

Massimo Bonavita, Marcin Chrust, Mohamed Dahoui, Peter Dueben, Jacky Goddard, Selime Gürol, Sean Healy, Elias Holm, Simon Lang, Inna Polichtchouk and many others