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Thank you to my co-authors and contributors
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« JMA — Toshiyuki Ishibashi, Kozo Okamoto

* NRL - Bill Campbell

« Met Office — Chawn Harlow, Ed Pavelin, Fabien Carminati, Jemima Tabeart*

« ECMWEF - Niels Bormann, Marco Matricardi, Kirsti Salonen, Alan Geer, Reima Eresmaa*
« ECCC - Sylvain Heilliette

* Meteo-France — Nadia Fourrié, Vincent Guidard

 DWD - Silke May, Olaf Stiller

» OId-KIAPS — Hyong-Wook Chun

 EUMETSAT — Tim Hultberg

* NCEP - Kristin Bathmann

... and their colleagues who contributed too!
... and others whose work | am presenting without having asked (Pete Weston and Chris Burrows!)

* now moved on to pastures new



Overview
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* Quick look at current status
* A look at the error correlations used
* Impact of introducing correlated errors
e The main part of the talk
* Methods used for estimation of error correlations
 Justification for shrinkage and variance inflation
* Where is the research headed?

* Reconstructed radiances
« Situation-dependent errors

« Bonus slides for later
 Alternative approach — physical error model — more work needed?
« How to estimate errors for channel selection purposes where Desroziers assumptions fall



Status of use of error
correlations for hyperspectral
sounders



Operational error covariances
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« What do the correlations look like?
 Consistent between centres?

 Consistent between
Instruments?

» What does the consistency (or lack
of) tell us about the sources of
correlation
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* Mostly IASI and CrlS as the main
Instruments In use

* Also AIRS, HIRAS, IKFS-2, GIIRS

21 41 61 81 101
Active channel index




All the following slides show correlation
matrices

(Centres all use different channel selections)

|ASI on the left CrlS on the right
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Summary of centre comparison

Australian Government
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» Diagnosed correlation structures for IASI and CrIS have a lot in common regardless of which
model is used.

« Correlations are stronger in surface channels, and stronger again between water vapour
channels

« Difference in behaviour of the ozone channels between the Météo-France and ECMWEF
models?

« The IASI observation error is diagonally dominant for the temperature sounding channels
» CrlS temperature sounding channel errors are more correlated than IASI

« Instrument noise is lower; other sources of error with higher levels of correlation
dominate

« CrIS shows more correlation between adjacent channels

« Collard* channel selection for IASI avoided spectrally adjacent channels to reduce
correlation

*Collard AD. 2007. Selection of IASI channels for use in numerical weather prediction. Q. J. R. Meteorol. Soc. 133: 1977-1991
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Comparisons of different sounders
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 Different sounders have quite different diagnosed correlations
 Points to different sources of error dominating for each instrument
 All instruments show strong correlations for water vapour channels

 Strength of correlation for temperature sounding channels tends to be
Inversely related to the measurement error variance



Error correlation matrices for hyperspectral IR instruments

IASI CriS FSR
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. CrlS FSR vs HIRAS — Full spectrum Bands 1&2
e~ Fabien Carminati — Met Office

Bureau of Meteorology

CrlIS channel correlation HIRAS channel correlation
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Different instrument noise -> different correlations in
diagnosed matrices
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The standard deviation of O-B for the 15 micron CO, band is dominated by measurement error

Reima Eresmaa, Fabien Carminati Chris Burrows
CriS, IKFS-2, IASI CrlS, HIRAS GIIRS
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https://doi.org/10.1002/qj.3908

Impact of introducing
correlated errors



JMA results
Ishibashi, T., 2020: DOI: 10.1175/MWR-D-19-0269.1
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Forecast RMSE improvement rate (%) o\
for temperature in global average. » NWP errors were S|gn|f|cantly

reduced by error covariance matrix
improvement of
(hPa) BT v'Introducing Inter-channel error
100 - s - correlations of all radiances
20() EaeEEe - ' v Refined observation error

300 S variances of all observations
400 " v’ Refined background error
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Impact at ECMWF when observation error covariance was first introduced for IASI

(a) ATMS {clear sky) (b) MHS (all-sky) (c) Wind
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£ NRL — Impact of correlated error for IASI + ATMS
o= Right columns include Desroziers-derived error variances
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https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/qj.2306

Summary of impact
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Basically, all centres have reported positive impact from introduction of correlated
errors for hyperspectral sounders...

... but definitely a need to tune those inflation factors!
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Process of covariance estimation
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120
« How do centres estimate their
covariance matrices? 100
« What do the observation error
variances look like? 80
e The fudge factor a.k.a. error
variance inflation 60
40 B
Tl .
l.’-.
20 S -
Error covariance for first 120 AIRS channels from 324 .-", :

channel subset. From Collard et al., 2010 ...,.



https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.701

s Method for estimation of error covariances

» Every centre who replied uses a matrix derived using the Desroziers* method
for operational covariance estimation.

 Every centre performs operations to improve the condition number of the
resultant matrix

 Every centre inflates the observation error variance

* Desroziers G, Berre L, Chapnik B, Poli P. 2005. Diagnosis of observation, background and analysis-error
statistics in observation space. Q. J. R.Meteorol. Soc. 131: 3385-3396.



we— «_Methods differ in the details but generally similar

Bureau of Meteorology

Start with an initial estimate of errors
« Diagonal
« Hollingsworth-Lénnberg
« Desroziers from 1D-Var
« Possibly multiply by a scaling factor
Output diagnostics to allow estimation of covariances using Desroziers method

Symmetrise Desroziers matrix
 (Covariance or correlation

Inflate error variance
» Spectrally variant or invariant multiplicative factor
« Additive factor (see next step)

Manipulate covariance matrix to improve conditioning
» Adjust smallest eigenvalues to reduce spread ("shrink" matrix)



Observation error variances
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* |nitial estimated errors from
Desroziers are usually much
smaller than previously used
uncorrelated error variances

« Often lie somewhere between
the observed SD(O-B) and
Instrument noise (right)

« (Can occasionally be "too
small" — below NEDT

* Iterating Desroziers technique
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o° of FG departures standard deviation

Can have Va ry|ng SUCCGSS —— 0° of diagnosed observation-errors
—— Instrumental noise at 280 K
645
1.0 1.5 2.0 25 3.0
Plot from Coopmann et al., 2020: Observation-error standard deviation [K

https://doi.org/10.5194/amt-13-2659-2020



e Operational obs error estimation methods
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Centre _________|Shrinkage Method __Inflation _______| Condition number _

Met Office + UM Partners Add constant to all Effectively: IASIT ~1.5, W.V.  1ASI 67
eigenvalues ~1.1

NRL Add constant to all IASI: T 1.65, WV 1.9 |AS| 169
eigenvalues

ECMWEF Increase small eigenvalues  1ASI: 1.75 |ASI 131
CrlS: 2.75 CrlS 4075

Meteo-France IASI: 2.0

NCEP Increase small eigenvalues T 1.6, WV 1.3, Window 1.8* |ASI 93
to condition number IASI: CrlS 53
200 CrlS: 125

Increase small eigenvalues  1ASI: 1.75
1.7%*

Ensure positive definite 1.6

* NCEP find that stricter cloud detection is necessary to get good results with correlated error covariances
** JMA justify their inflation with a corresponding deflation of background error by the equivalent factor (1/1.7)




e« Environment Canada - diagnosed errors for IASI
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Chosen errors:
Significant inflation
above std(O-B)

Desroziers estimate
well below std(O-B)



NRL: Impact of conditioning on convergence
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—CN= 16

—CN = 64 "At least in our system, the computational
o IR IN benefits of additive reconditioning over Ky
o 'EXLVIR Fan reconditioning outweigh the slightly

- -No corr better forecast performance."

—

®
S
2
0
@
(14

o M

o
o]

Convergence at Residual =
0.05

70 80 Campbell et al., 2017
Iterations https://doi.org/10.1175/MWR-D-16-0240.1




Error Standard Deviation

Criginal
— k=1000
Bureau of Meteorology — k=250

Australian Government

Fabien Carminati —
experiments with CrlS
FSR conditioning

T
150
channel index

Onginal Correlation

channel index

100 200 100 200 200 100 200
channel index channel index channel index channel index




Verification against EC analyses.

Period of study so far:
14 days (18/09-01/10 2020).

3 different inflations:
« R1000 (left)

o condition number = 1000

o inflation = diagonal +
~0.028
R250 (middle)

o condition number = 250

o inflation= diagonal +
~0.113
R100 (right)

o condition number = 100

o inflation = diagonal +
~0.28

CrIS FSR

N320L70 UM, N108/N216L70 hybrid 4DVar, coupled hybrid N216L70 44m/9h ensemble forecasts
September 2020 configuration
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reau of Meteorolo,

Justification for shrinkage and
error inflation



What did contributors say?

Australian Government
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 Varied statements regarding justification for shrinkage and error inflation

« Most view the process pragmatically
» A process that must be done to make 4D-Var work effectively
* Reduce iterations
» Improve forecast benefit
« Some feel the justification is physical
« Accounting for errors that are not diagnosed properly by the Desroziers method
« E.g. quality control problems
» More on this from Alan Geer's talk on all-sky assimilation
« Some mathematical justification
« Large body of work on covariance estimation especially in biostatistics and finance



Mathematical Justification for Shrinkage
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* The estimation of error covariances is inherently "overdispersed"
« The largest eigenvalues are over-estimated, and the smallest ones are underestimated

« Covariance matrices perform better if they are "shrunk" —i.e. all eigenvalues are brought
towards the mean

e Effron and Morris (1977):

* Daniels and Kass (2001):


https://statweb.stanford.edu/~ckirby/brad/other/Article1977.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0006-341X.2001.01173.x

Australian Government
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Stein’s Paradox in Statistics

The best guess about the future is usually obtained by computing

the average of past events. Stein’s paradox defines circumstances

in which there are estimators better than the arithmetic average

strikingly contrary to generally

held belief even though an obvi-
ously valid proof is given. Charles Stein
of Stanford University discovered such
a paradox in statistics in 1955, His result
undermined a century and a half of
work on estimation theory, going back
to Karl Friedrich Gauss and Adrien Ma-
rie Legendre. After a long period of re-
sistance to Stein's ideas, punctuated by
frequent and sometimes angry debate,
the sense of paradox has diminished and
Stein’s ideas are being incorporated
into applied and theoretical statistics.

Sﬂmcti.mes a mathematical result is

by Bradley Efron and Carl Morris

jor-league players as they were recorded
after their first 45 times at bat in the
1970 season. These were all the players
who happened to have batted exactly 45
times the day the data were tabulated, A
batting average is defined. of course,
simply as the number of hits divided by
the number of times at bat; it is alwaysa
number between 0 and 1. We shall de-
note each such average by the letter y.
The first step in applying Stein's meth-
od is to determine the average of the
averages. Obviously this grand average,
which we give the symbol ¥, must also
lie between 0 and 1. The essential proc-

factor ¢is .212. Substituting these values
in the equation, we find that for each
player z equals .265 + .212(y — .263).
Because ¢ 15 about .2, each average
will shrink about 80 percent of the dis-
tance to the grand average. and the total
spread of the averages will be reduced
about 80 percent.

As an example consider the late Ro-
berto Clemente, who was the leading
batter in the major leagues when our
statistics were compiled. For Clemente
y is equal to .400, and z can be deter-
mined by evaluating the expression
z =265+ .212(.400 — .265). The re-




Austr;;ian i)ve:nment Stei n i a n S h ri n ka g e

Bureau of Meteorology

265
(GRAND AVERAGE)

ELLI

ODRIGUEZ
SER

CAMPANERIS
PETRO.

MUNSON
R
SCOTT
WILLIAMS
UN
KESSINGER
SPENCER
BERRY
JOHNSTONE
AROBINSON
CLEMENTE

QBSERVED
AVEBRAGES

A50 200 250 300 350 400
JAMES-STEIN ESTIMATORS

JAMES-STEIN ESTIMATORS for the 18 baseball players were calculated by “shrinking™ the
individual batting averages toward the overall “average of the averages.” In this case the grand
average is .265 and each of the averages is shrunk about B) percent of the distance to this value.
Thus the theorem on which Stein’s method is based asserts that the true batting abilities are
more tightly clustered than the preliminary batting averages would seem to suggest they are.
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We consider here two general shrinkage approaches to estimating the covariance matrix and regression coefficients.
The first involves shrinking the eigenvalues of the unstructured ML or REML estimator. The second involves shrinking
an unstructured estimator toward a structured estimator. For both cases, the data determine the amount of shrinkage.
These estimators are consistent and give consistent and asymptotically efficient estimates for regression coefficients.
Simulations show the improved operating characteristics of the shrinkage estimators of the covariance matrix and the
regression coefficients in finite samples. The final estimator chosen includes a combination of both shrinkage
approaches, i.e., shrinking the eigenvalues and then shrinking toward structure.



— « Which method is more justifiable?

Bureau of Meteorology

« Some like the idea that increasing smallest eigenvalues is essentially Ky Fan p-k
norm covariance adjustment

« Tanaka and Nakata (2013)

« "Positive definite matrix approximation with a condition number constraint is an

optimization problem to find the nearest positive definite matrix whose condition number
Is smaller than a given constant.”

« Adding a constant to the eigenvalues is effectively Steinian shrinkage
 Ledoit and Wolf (2004)

« "This paper introduces an estimator that is both well-conditioned and more accurate than
the sample covariance matrix asymptotically. This estimator is distribution-free and has a
simple explicit formula that is easy to compute and interpret. It is the asymptotically
optimal convex linear combination of the sample covariance matrix with the identity
matrix."


https://link.springer.com/article/10.1007/s11590-013-0632-7
https://www.sciencedirect.com/science/article/pii/S0047259X03000964?via%3Dihub

Effect of Steinian shrinkage on correlation structure
Australian Government WeSton et al., 2014

Bureau of Meteorology
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https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/qj.2306

Which method is better?
== Jemima Tabeart — Poster!

Bureau of Meteorology

* Both methods strictly increase standard deviations, inflation results in a bigger increase than changing only the

smallest eigenvalues

* Inflating all eigenvalues (ridge regression) strictly decreases the absolute value of off-diagonal correlations

"Changes to t
due to the ap

ne analysis of data assimilation problems

olication of reconditioning methods are

likely to be highly system-dependent”

Plots show
original
minus
reconditioned

20 40 60 80 100 120 ' 20 40 60 80 100 120



Covariance? Correlation? Inverse Covariance?

Australian Government

Bureau of Meteorology

* Does it matter whether the shrinkage operation is done on the covariance or

the correlation matrix?
« Plenty of centres shrink the covariance and then inflate the diagonal as well
« Small eigenvalues matter because error covariances are used in their inverted
form (R-! appears in the cost function, not R)

* 1/ very small number = very big number
« Think of the small eigenvalues as a mode with a very small error —it's "well measured"...
except that as it goes towards zero, you would say there is no information about it at all.
« This is very confusing!
* Is it better to shrink the inverse matrix?



Physical Justification for error inflation

Australian Government

Bureau of Meteorology

« Most (published) thoughts on this from ECMWEF

* Eresmaa et al. 2017

« Itis not fully understood why a scaling factor is needed, nor why it should be higher for
CrlS than for IASI. It is our guess that the scaling compensates for sub-optimalities
associated with various simplifications needed for practical reasons. These might include
ignoring horizontal and temporal error correlation altogether, lack of situation
dependency, mis-specification in background-error covariance, and correlation between
observation and background errors. Furthermore, our interpretation is that such
sub-optimalities are amplified in the case of CrIS, because the uncorrelated
observation-error contribution (i.e. instrument noise) is relatively small in the overall error
budget.


https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3171

Physical justification for inflation — inability to diagnose
e representivity error?

« Alan Geer - in context of all-sky assimilation:

« Can get equivalent clear-sky error covariance to Desroziers*1.75 by just taking covariance
of O-B departures (for water vapour channels at least)

» Representivity error also dominates in clear sky, driven by inability of model to correctly
represent inertia-gravity waves

« Trailing eigenvectors amplify small inter-channel differences

 If resulting from biases, these will be incorrectly amplified and generate increments that
oscillate in the vertical

« Even without bias, can amplify signals that map onto vertical temperature oscillations (gravity
waves) that DA cannot properly handle
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Splitting the spectrum in two (in two ways)

Tim Hultberg

Original radiance Reconstructd radiance
(minus background) (minus background)
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- Effect of PC compression on measurement error inter-channel
Australian Government corre | ati ons

Bureau of Meteorology

Recoristructqrd Radiance I:‘I‘lstrument Nﬂifjf: {Z:ovarianu:el: Coliard u:haa‘lmr:!s

My view: you have considerably more latitude
to play games with error covariances for stand
alone retrievals.

The error covariances that are used/required
for NWP contain contributions from many
sources of error.

At the moment, the most pragmatic way to
model these is via diagnostic methods — it
doesn't really matter in that case whether the
correlations are from your PC compression or
another source, as long as you capture them
all. Failure to do so can result in undesirable
oscillatory behaviour.

-0.0001




Reconstructed radiance Desroziers diagnosed errors
Marco Matricardi

Error correlation is diagnosed in PC space (400 PCs) then converted. The PC matrix is well-
conditioned. RR matrix conditioning is improved and variances are inflated empirically with
different factors for different regions

Australian Government

Bureau of Meteorology
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Compare with raw radiance diagnosed errors

Australian Government

Bureau of Meteorology

Wavenumber [cm ]

- 1456.75

—
@
o
E
S
c
e
c
c
@
i -
o

Assigned sigma_o [K]

I I
o ]
(=2} o2

I | I
o ™ 0
@
N ™ ™
ol a5

|
[Ce]
<
3V

Channel number
Channel number




DWD IASI correlation matrices
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Situation dependent error
covariances



NCEP Surface-type dependent obs errors

Kristen Bathmann

ian Government
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https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.3925

wenmcoemet - NCEP Surface-dependent observation errors

Bureau of Meteorology

| | | The new observation

o ASA Sea a the orginal erors from
IASI-A Land - _ _

_ —--|ASI-B Sea N a diagonal R matrix.
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variance inflation. The

six channels that
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w— « Meteo-France — model configuration dependent errors

Bureau of Meteorology

observation error standard deviation - sigma_o

Thinning distance

— similar sigma_o for T
channels

— much lower sigma_o for
surface and WV channels in
mesoscale: less
representativeness errors?

0
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= Met Office All-sky error characterisation
Australian Government E d Pavel i n

Bureau of Meteorology

Desroziers-diagnosed correlations corresponding to scenes broadly classified as clear sky, moderately cloudy and very cloudy
(based on the the cloud radiative effect in one window channel), diagnosed from all-sky 1D-Var retrievals.

Correlations increase as a function of "cloudiness”, presumably in response to increasing forward model error (also probably a
contribution from inaccuracies in the B-matrix).

It is likely that it will be necessary to find ways of representing cloud-dependent observation error correlations in all-sky
assimilation, instead of just varying the observation errors as we do currently.
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S ECMWE All-sky error characterisation
Australian Government Ki r Sti S a IO n e n

Bureau of Meteorology

Alternative approach to classifying error, this time by cloud height.

See Kirsi's poster
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NeDT...

Australian Government
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« Everyone estimates full error covariance in brightness temperatures not
radiances

« Measurement errors for interferometers (CrlS, IASI) are constant with respect to
scene temperature in radiance space

« Should we do something about that?
* Has anyone tried to assimilate radiances? Would it make a difference?
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Australian Government
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« Most centres are using correlated errors for hyperspectral sounders in
operations

* Everyone uses Desroziers!

» Everyone does some manipulation to the output

* Justifications for this manipulation vary

 Results are surprisingly consistent between centres

* Not much research into improving these error estimates has happened

« Some moves towards scene-dependent errors
 Surface differentiation
* Cloud effects

« Reconstructed radiances have different error properties, but essentially the
same methods can be used



Australian Government
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Physical Modelling of error
terms



g Modelling of error using inventory of contributing terms
Australian Government H _W C h u N

Bureau of Meteorology
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Physical model error components
Australian Government H _W C h u n

Bureau of Meteorology

Measurement noise Imperfect cloud detection Forward model error includes Representativeness error
regression error and fast vs LBL
errors
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Observation errors for channel
selection



Observation errors for channel selection

Australian Government
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« Desroziers assumes that you are assimilating the channels for which error

covariances are estimated
« What do you do if you want to do a channel selection? You need observation

errors for the full spectrum
o Use the Hollingsworth-Lénnberg! method
= Use O-B only; assumes zero separation between observations
o Use a 1D-Var and use "Obs minus Retrieval" to provide the "Obs minus Analysis" statistics

= Different behaviour using 1D-Var (Stewart et al, 2013)?

"Hollingsworth A, Lonnberg P. 1986. The statistical structure of short-range forecast errors as determined from
radiosonde data. Part 1: The wind field. Tellus 38A: 111-136.

*Stewart, L.M., Dance, S.L., Nichols, N.K,, Eyre, J.R. and Cameron, J. (2014), Estimating interchannel
observation-error correlations for IASI radiance data in the Met Office systemt. QJ.R. Meteorol. Soc., 140:

1236-1244. doi:10.1002/qj.2211



Estimation of CrIS FSR observation error covariance from 1D-Var
mm e Fabien Carminati
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Observation error covariance matrix

Australian Government
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— Oc=n
srt(diag(R))

Causing a drift of
diag(R) to
unreliable values
when iterating on
Desroziers
diagnostic.
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Successive iterations of Desroziers increases the estimate of observation error towards the clearly erroneous
values in the window region



.. Improving quality control essentially solves this problem

Bureau of Meteorology
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Desroziers estimation of IASI errors from 1D-Var

Chawn Harlow

Operational 4D-Var errors
are much lower than the
diagnosed errors from 1D-
Var
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IASI channel

First and Second Desroziers Iterations — IASI from 1D-Var
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i« Choice of resolution is important (Weston et al., 2014)

Bureau of Meteorology

Correlation matrix of the
difference in diagnostic IASI
error covariance matrices from
4D-Var output run at N216 and
N48 resolutions

Correlation



4D-Var vs 1D-Var — how much is background error?
Australian Governme:t St ewa I‘t, 201 3

Bureau of Meteorol
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https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2211

4D-Var vs 1D-Var — WV channels only

Australian Government St ewa rt’ 2 O 1 3
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