Situation dependent inter-channel observation error correlations for all-sky data assimilation

Alan Geer

Thanks to: Katrin Lonitz, Stefano Migliorini, Marco Matricardi, Niels Bormann, Peter Weston

Recap all-sky situation-dependent observation errors

© ECMWF November 4, 2020

Current all-sky microwave model (no interchannel error correlations)

Situation-dependent observation error All-sky microwave departures look a lot more Gaussian

Geer and Bauer (2010,2011)

Various cloud proxy variables, e.g for all-sky IR Okamoto et al. (2014)

Normalised by the symmetric observation error model (symmetric = binned by mean of observed and simulated cloud amount)

Er, what about background error?

Tune observation error model for all-sky microwave imagers

A big approximation – ignore background error in all-sky observation error modelling

 $E(\mathrm{d}\mathrm{d}^T) = \mathrm{H}\mathrm{B}\mathrm{H}^T + \mathrm{R}$

All-sky applications: observation error (representation error) is dominant

 $E(\mathrm{d}\mathrm{d}^T) \approx \widetilde{\mathrm{R}}$

Try to subtract background error properly:

- Desroziers (2005) statistics
 - Ensemble HBHT estimates

Interchannel correlated observation errors for all-sky assimilation of IASI water vapour channels

Aim: move from clear-sky to all-sky assimilation for IASI

Bormann et al. (2015,2016) – correlated observation error for clear-sky assimilation

• Desroziers-estimated observation error matrix plus scaling:

• With a floor on eigenvalues to improve conditioning

Improves forecast scores:

All-sky IR error model aim: correlated, situation dependent

Geer (2019, AMT, https://doi.org/10.5194/amt-12-3629-2019)

- WV channel part
- of correlation
- matrix for clear-
- sky situations
- (Bormann et al.,
- 2016)

Full correlation matrix for clearsky situations (Bormann et al., 2016)

- Global constant correlation
- matrix of global all-sky IR
- departures

Eigenvector decomposition of the error covariance matrices

All-sky and clear-sky eigenvectors are very similar

 $\widetilde{\mathbf{R}} = \underbrace{\mathbf{E}}_{\mathbf{A}}^{-1}\mathbf{E}^{\mathrm{T}}$ $\overset{\dagger}{\mathsf{Eigenvectors}}$

Bormann et al. Operational clear-sky (Desroziers + tuning) 45r1 clear-sky 43r1 all-sky 45r1 all-sky land/ocean 45r1 all-sky ocean only $\widetilde{R} \approx E(dd^T)$

CECMWF

All-sky and clear-sky eigenvectors are very similar $\widetilde{\mathbf{R}} = \mathbf{E} \mathbf{\Lambda}^{\mathsf{T}} \mathbf{E}^{\mathsf{T}}$ Main differences are in the eigenvalues Eigenvalues Primary all-sky / clear-sky difference is Operational clear-sky in the 2 leading 45r1 clear-sky 10.0 Bormann et al. 43r1 all-sky eigenvalues operational clear-sky 45r1 all-sky land/ocean 45r1 ocean only eigenvalues after sqrt(Eigenvalue) [K] "floor" retuning. Stated aim: improve conditioning Little difference between Clear-sky and all-sky 0.1 careful Bormann et al. eigenvalues before any (2016) approach and just tuning 2 3 5 6 taking covariance of O-B Eigenvector number

Eigenvector decomposition of the error covariance matrices

ECMUF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

One way to think about obs error covariance matrices

 $d_i = y_i - H_i(\mathbf{x})$ Correlated error represented by an eigendecomposition Uncorrelated error $J^{O}(\mathbf{x}) = \frac{1}{2} \mathbf{d}^{\mathrm{T}} \widetilde{\mathbf{R}}^{-1} \mathbf{d} = \frac{1}{2} \sum_{i=1}^{n} \left(\frac{d_{i}}{\sigma_{i}^{O}} \right)^{2} \qquad J^{O}(\mathbf{x}) = \frac{1}{2} \mathbf{d}^{\mathrm{T}} \mathbf{E} \mathbf{\Lambda}^{-1} \mathbf{E}^{\mathrm{T}} \mathbf{d} = \frac{1}{2} \sum_{i=1}^{n} \left(\underbrace{\mathbf{e}_{j}^{\mathrm{T}} \mathbf{d}}_{\lambda_{i}^{O},5} \right)^{*}$ "Eigendeparture j" Cost function its observation error is its eigenvalue^0.5 Cost $J^{O'(x)} = -\mathbf{H}^{\mathrm{T}} \widetilde{\mathbf{R}}^{-1} \mathbf{d} = \frac{1}{2} \sum_{i=1}^{n} h_{i} \frac{d_{i}}{(\sigma_{i}^{O})^{2}} \qquad J^{O'(x)} = -\mathbf{H}^{\mathrm{T}} \mathbf{E} \mathbf{\Lambda}^{-1} \mathbf{E}^{\mathrm{T}} \mathbf{d} = \frac{1}{2} \sum_{i=1}^{n} \mathbf{H}^{\mathrm{T}} \mathbf{e}_{j} \frac{\mathbf{e}_{j}^{\mathrm{T}} \mathbf{d}}{\lambda_{j}}$ function gradient "Eigenjacobian"

Jacobian - one obs

Departure – one channel (*i*)

 λ_i eigenvalue and e_j eigenvector j

IASI temperature sensitivities, clear sky (7 all-sky WV channels)

Standard all-sky observation error model – just applied to "eigenchannels"

Number in bin

All-sky IR error model: one error covariance matrix with **eigenvalue scaling** as function of symmetric cloud amount -> adaptive covariance matrix

Similar error std. dev. in clear-sky situations from new model and existing clear-sky error model

Correlation matrix for clear-sky situations

Correlation matrix for fully cloudy situations

Analysis fit and T+12 forecast verification: fit to ATMS

100% = Control: full system minus 7 IASI WV channels

Why eigenvalue floor is important

1. Bias looks very different with correlated error

 d_i

 $\overline{\sigma_i^o}$

Departures normalised by diagonal observation error

Mean change in zonal temperature analysis versus no-WV7 control

Eigenbiases map onto vertically oscillating bias in T Mean change in zonal temperature analysis versus no-WV7 control

Why eigenvalue floor is important

2. Stratospheric temperature increments generated by all-sky IR WV channels

Raw situationdependent all-sky error model

Clear-sky T sensitivity by eigenchannel

Situationdependent all-sky error model with 1.0 eigenvalue floor

Why eigenvalue floor is important

3. Stratospheric temperature sensitivity is large in trailing eigenvectors

% of jacobian / eigenjacobian above 100 hPa

Chan. /	Clr TB	Clr Eigen	Cld TB	Cld Eigen
Eigen.				
1	0.00	0.01	0.08	0.25
2	0.00	0.04	0.20	1.42
3	0.00	0.10	0.05	6.20
4	0.04	0.10	0.20	7.04
5	0.01	0.06	0.132	13.1
6	0.01	0.59	0.367	10.3
7	0.11	0.53	1.23	59.5

Using observation error covariance matrices is not just about conditioning

 Small trailing eigenvalues in the observation error covariance matrix amplify sensitivity to high-order combinations of channels

- Issues
 - 1. Trailing eigenvalues amplify some odd bias patterns seen in the eigendepartures
 - 2. Eigenjacobians of trailing eigenvectors map onto high-order vertical T oscillations: gravity waves
 - 3. Unexpected sensitivities: Trailing eigenjacobian (j=7) over very high clouds has 60% of its temperature sensitivity in the stratosphere
- By increasing the trailing eigenvalues
 - are we protecting the analysis?
 - are we losing real information?
- Are the trailing eigenstructures reliable? (sampling errors?)

Correlated all-sky microwave observation errors

© ECMWF November 4, 2020

New error model for all-sky microwave – one fully specified interchannel covariance matrix per symmetric cloud & TWCV bin (-> 164 error covariance matrices)

19

37v 890 83/7

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

- Results: all-sky microwave imager impact increased, • particularly at 500hPa and below
- Essential to good results: •

- VarQC •
- Eigenvalue truncation at 0.5 •

These "details" were the difficult part. And it got more difficult again when the system changed at next model cycle...

hPa

10

400

70

1000

40

1000

-90

-90

ed by RMS error of contro

Difference in RMS er

Summary

- Two different strategies for all-sky adaptive observation error interchannel covariance matrices:
 - Binned Gaussian populations -> 164 error covariance matrices in lookup table function of (TCWV, symmetric cloud amount)
 - Cycle 45r1 for all-sky microwave imagers (SSMIS, AMSR2, GMI) with 1% boost to forecast scores.
 - Cycle 46r1 experimentation not good, subsequently abandoned addition of 150 GHz?
 - Eigenvalue scaling using symmetric error model approach (Geer, 2019, AMT, https://doi.org/10.5194/amt-12-3629-2019)
 - For the first time, all-sky IR is giving good results in the ECMWF system
 - All-sky IR similar to clear-sky in midlatitudes; better forecasts than clear-sky in tropics
 - Aim to progress to operational all-sky IR but **paused**, awaiting finalisation of new clear-sky hyperspectral IR developments (move to reconstructed radiances framework?)

• Issues with observation error covariances can be understood **physically** by studying eigenjacobians and eigendepartures

Spare slides

© ECMWF November 4, 2020

Overlap between VarQC and observation error

Minamide and Zhang (2017), Bonavita et al. (2017)

Source of background departure errors (observation space)

	Instrument noise (e.g. 0.3K)	Observation operator	Error of representation / model error	Background (forecast) error
Clear areas	May dominate	Usually minor	Treated as minor, not actually	Small (0.1K)
Cloudy areas	Irrelevant	Secondary (5K?)	Dominant (20K?)	Secondary (5K?)

"Representation spectrum"