



Oliver Guillet

1 / 20

### An observation error correlation model for wind data.

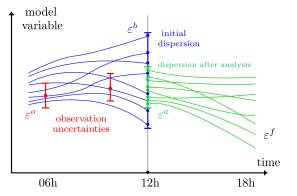
### Oliver Guillet

Eumetsat Workshop 2020

November 2020

Contributors : Y. Michel, M. Moureaux

### Ensemble data assimilation



The forecast error depends on the analysis error :  $\varepsilon^{f} = M\varepsilon^{a} + \varepsilon^{m}$ . The analysis error depends on the observation error :  $\varepsilon^{a} = (I - KH)\varepsilon^{b} + K\varepsilon^{o}$ , where  $\varepsilon^{o} = R^{1/2}w$  contains perturbations.

(e.g. Houtekamer et al. (1996), Fisher (2003), Berre et al. (2006))

General methodology :

- To generate new observations for the ensemble, we add a correlated noise  $\varepsilon_i$  such that  $\mathbf{y}_i = \mathbf{y} + \varepsilon_i$ .
- Given  $\boldsymbol{w}$  a gaussian white noise, we set  $\boldsymbol{\varepsilon}_i = \boldsymbol{R}^{1/2} \boldsymbol{w}$ .
- Therefore,  $\varepsilon_i$  is itself a realisation of  $\mathcal{N}(0, \mathbf{R})$ .

When y contains u and v:

• **R** will contain u - u correlations, v - v correlations and cross-correlations

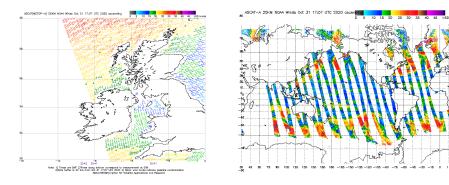
$$\boldsymbol{R} = \left(\begin{array}{cc} \boldsymbol{R}_{uu} & \boldsymbol{R}_{uv} \\ \boldsymbol{R}_{vu} & \boldsymbol{R}_{vv} \end{array}\right)$$

### Scalar observations VS vector observations

- Work has been done to account for **spatial** correlations in **scalar** observations such as **satellite data** (Brankart et al. (2009), Ruggiero et al. (2016), Michel (2018), Guillet et al. (2019)).
- The modelling of correlation operators for **vector** observations such as AMV or SCAT is a new topic (the only possible exception being Isaksen and Radnóti (2010)).
- Existing work mostly revolves around the **estimation** of wind errors correlations in AMV (Bormann et al. (2002)) / scatterometer data (Cotton (2016)).
- They show that wind errors may contain **cross-correlations** (i.e. between *u* and *v*)

Question : How to represent R and  $R^{1/2}$  for these types of observations in order to generate wind pertubations for the EDA?

# NOAA wind vectors (25km) retrived from ASCAT - METOP A on Sunday, november 1st.



| Int |  |  |
|-----|--|--|
|     |  |  |
|     |  |  |







4 Conclusion and perspectives

One way to account for **cross-correlations** is to transform the winds into **velocity potential** and **streamfunction** (assuming these new control variables are uncorrelated).

This method was used in Schlatter (1974) with the additional condition  $div(\mathbf{u}) = 0$  to model "geostrophic" covariances in **B**.

The Hodge-Helmholtz decomposition leads to :

$$oldsymbol{u} = \operatorname{rot}(\psi oldsymbol{e}_z) - \operatorname{grad}(\chi).$$
  
 $oldsymbol{u} = ig( egin{array}{c} -\operatorname{grad} & \operatorname{rot} \end{array}ig) igg( egin{array}{c} \chi \ \psi \end{array}igg) = oldsymbol{S} igg( egin{array}{c} \chi \ \psi \end{array}igg)$ 

(Here, we used the identity :  $rot(-\psi \boldsymbol{e}_z) = \boldsymbol{e}_z \times grad(\psi)$ ).

The wind correlation operator is formulated as  $\pmb{R} = \pmb{R}^{1/2} \pmb{R}^{\mathrm{T}/2}$  where

$$R^{1/2} = SC^{1/2}.$$

The operator **S** transforms  $(\chi, \psi)$  into (u, v) and is written :

$$\boldsymbol{S} = \left( egin{array}{cc} -\operatorname{grad} & \operatorname{rot} \end{array} 
ight).$$

The matrix  $\boldsymbol{C}^{1/2}$  is block diagonal :

$$oldsymbol{\mathcal{C}}^{1/2}=\left(egin{array}{cc}oldsymbol{\mathcal{C}}_{\chi\chi}^{1/2}&0\0&oldsymbol{\mathcal{C}}_{\psi\psi}^{1/2}\end{array}
ight).$$

where each component is itself built from a diffusion operator  $C_{\star\star}^{1/2} = \gamma^{1/2} (1 - \ell^2 \Delta)^{-m/2}$ .

Using the finite element method, the continuous equation

$$(1-\ell^2\Delta)u_{k+1}=u_k$$

becomes

$$(\mathbf{M} + \mathbf{K})\alpha_{k+1} = \mathbf{M}\alpha_k,$$

where  $0 \le k < m$ .

The mass matrix M and the stiffness matrix K are very sparse and can be factored using a Cholesky algorithm.

Therefore, provided m is even :

$$\boldsymbol{R}^{1/2} = [(\boldsymbol{M} + \boldsymbol{K})^{-1} \boldsymbol{M}]^{m/2} \boldsymbol{M}^{-1/2}$$

First, we write

$$oldsymbol{S} = ig( egin{array}{cc} -\operatorname{grad} & \operatorname{rot} \end{array}ig) = igg( egin{array}{cc} -\partial_x & \partial_y \ -\partial_y & \partial_x \end{array}igg).$$

The finite element discretization yields

$$\mathbf{S} = \left(egin{array}{cc} -m{D}_x & m{D}_y \ -m{D}_y & m{D}_x \end{array}
ight).$$

Again, the matrices  $D_x$  and  $D_y$  are sparse.

Their transpose can be computed via  $\boldsymbol{D}_x^{\mathrm{T}} = -\boldsymbol{D}_x$  and  $\boldsymbol{D}_y^{\mathrm{T}} = -\boldsymbol{D}_y$ .

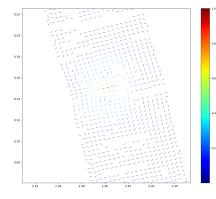
### 1 Introduction



4 Conclusion and perspectives

▲ 西部

### Typical response on unstructured meshes

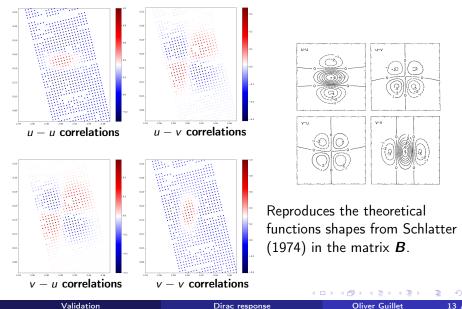


A plot of  $\mathbf{R}\delta_k$  where k is the observation at the center of the domain. (Experiments using SCAT observations thinned at a 50km resolution. The length-scale is  $\ell = 190 km$ )

#### Results :

- Imposing div(u) = 0 results in geostrophic balance.
- Missing data do not penalize the method.
- the amplitude (variance) has been normalized.

### Cross correlations in R



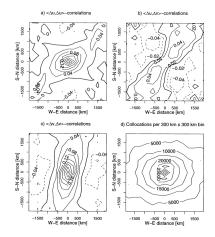
Dirac response

Oliver Guillet

13 / 20

### Geostrophy in practice

#### Diagnostics of AMV error correlations from Bormann (2003).



In practice, there is a slight tilt : non geostrophy?  $\chi$  and  $\psi$  in reality?

Validation





4 Conclusion and perspectives

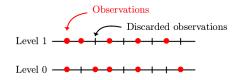
- We extended the method introduced in Guillet et al. (2019) to the case of vector observations.
- This time, we are interested in  $\mathbf{R}^{1/2}$  to generate ensemble perturbations.
- To account for **cross-correlations** in the wind vectors, we worked on the **velocity potential** and **streamfunction**.
- The 1st order and 2nd order derivatives are all discretized using the **finite element method**.
- This allows treatment on unstructured meshes.
- We recover results from previous studies (Schlatter (1974) for **B** or Bormann (2003) for **R**).

This work on vector observations is new and there is still work to do before implementation in a larger scale system :

- The **normalization** of the correlation operators is not computed analytically (needs tuning).
- Diagnostics for AMV data suggests the potentials  $\chi$  and  $\psi$  might be (cor)related in practice.
- We did not adress the question of **R**<sup>-1</sup> : the existence of the inverse may depend on the boundary conditions on the domain.

### Related topic : LEFE project on 3D correlations

- We know how to account for horizontal or vertical correlations.
- But the horizontal structure of observations can be different at each vertical level (quality control, thinning).



- We want to investigate 3D finite elements (e.g. for radar data) or a 2D+1D approach (for satellite data).
- LEFE project for the period 2020-2023.

- Atlas : a library for developing flexible next-generation NWP models.
- Provides mesh-generation capabilities from a wide catalogue of meshes.
- Mainly developped in C++, can be interfaced with Fortran.
- Our goal : provide a software for modelling / applying matrix **R** and its inverse based on Atlas.
- Work postponed due to quarantine etc. Will 2021 be the year ??

## Thank you