

This project is a part of a larger C3S data rescue effort:

Satellite data rescue for climate reanalysis: C3S_311c_Lot1

Thomas W. Hall¹, Jonathan P. D. Mittaz^{1,2}, Pascal Prunet³, Andrzej Klonecki³, Carsten Standfuss³ ¹Department of Meteorology, University of Reading, ²National Physical Laboratory, ³SPASCIA

Project Objective: to recover, assess and prepare a selection of early satellite data records (mainly 1964-1979) for use in climate reanalysis.

Context:

- ERA5 reanalysis currently run for periods 1950-present
- ERA6 next generation centennial reanalysis scheduled for 2023 start

Function

Single 3.4-4.2 µm channel (Nimbus 1&2) Map night-time cloud clover and cloud top HRIR 1964-1970

- Very little satellite data pre-1979 is currently assimilated into climate reanalyses (only VTPR assimilated in ERA5)
- Several satellite missions from before 1979 identified as potentially important for reanalysis. However, important work needed to bring them to a sufficient level of readiness

Project data rescue activities:

- Develop and maintain an up-to-date global inventory of known satellite data records that require data rescue
- Obtain and provide access to the datasets. Development of readers for historical 2) binary formats and conversion to modern formats (netCDF4)
- Error characterisation based on available documentation, identification of bias 3) parameters, ranking instruments in terms of their interest for assimilation.
- Assess available RTTOV coefficients and creation of new coefficients, improve RT 4 modelling where possible and estimate uncertainties
- Develop QC schemes based on step 3 and timing/geolocation corrections to 5) improve data quality
- Characterise uncertainties and determine dominant sources of error (biases) and 6) apply bias corrections
- Large scale calculations of the difference between observations and model values from ERA5 (O-B). Assess performance of bias models currently used in ERA5. Develop bespoke VarBC models to correct the observations during assimilation.

Geolocation corrections:

I			and additional 0.7-1.3 µm component (Nimbus 3)	temperature
	MRIR	1966-1970	6.7 μm water vapour, 10.5 μm window, 15 μm CO ₂ , 5-30 μm, 0.2-4.0 μm visible	Detect surface and stratospheric temperature, water vapour, reflected solar energy
	SIRS	1969-1971	7 channels in CO_2 band and 1 window channel (Nimbus 3) and extra 6 channels in water vapour band (19-35 μ m) on Nimbus 4	Atmospheric sounding (220km footprint)
	IRIS	1970-1971	862 channels in 400-1600 cm ⁻¹ (6.25-25 μm) interval	Early hyperspectral sounder with surface sensing capability
	THIR	1970-1977	$6.7~\mu m$ water vapour and 11.5 μm window	Map cloud cover, cloud top temperature, surface temperature, relative humidity
	VTPR	1972-1979	8 channels in window, CO_2 and water vapour bands (11.9-18.7 μ m)	Atmospheric temperature sounding
	PMR	1975-1978	2 channels (cells) in 15 μm CO $_2$ band	Uses pressure modulation to sense at different heights in stratosphere (45-90 km)
	SSU	1978-2006	3 channels (cells) in 15 μm CO $_2$ band	Retrieval of temperature in stratosphere (29-44 km)

Data QA:

Sensor | Time period | Channels |

- Analysis of data quality to improve the usability of the data
- We have developed additional quality flags based on observations only and on O-Bs

Error characterisation:

• Uncertainty tree analysis to study impact of all identifiable sources of error

- Geolocation quality studied for each historic sensor and corrections made where • necessary
- Two-line element (TLE)-based approach using Pyorbital Python package: •

- For most sensors, this significantly improves the geolocation accuracy ightarrow
- Data that would be unusable can be recovered in some cases:
 - Correction of IRIS orbit tracks in January 1971
 - Clear improvements at Poles for THIR and MRIR where there are discontinuities in the original anchor points

Original geolocation

However, geolocation errors up to 400km evident for VTPR, even with TLE correction:

These errors are complex and highly variable

Updated geolocation

Estimates of instrument noise from local standard

- Sensor intercalibration is a powerful tool to understand instrument behaviour and study observational biases
- IRIS spectra are convolved with SIRS SRFs. 11 SIRS channels covered by IRIS data
- Collocation criterion: ΔT<2s between SIRS (nadir only) and IRIS
- Results show a consistent bias between the two instruments, with IRIS being lower by 1-5 K depending on channel. The results are consistent with previous studies.

Bias modelling from O-B analysis

latitude, satellite zenith angle

surface and tropospheric channels

- Example for channel 7:
- ----- IRIS ---- IRIS spline X SIRS X IRIS SIRS srf

Potentially due to satellite pitch errors but attitude data is unavailable

- A more detailed study is required to quantify these
- errors on a case-by-case basis

