

Sensitivity of VarBC to the Misspecification of Background Error Covariances **Met Office**

Devon Francis^{*} | Alison Fowler | Amos Lawless

National Centre for

Earth Observation

URAL ENVIRONMENT RESEARCH COUNCIL

Introduction

To correct for observational biases, VarBC extends variational data assimilation to find the analysis of the bias correction coefficients, β , as well as the state, *x*. The correction is defined via the observation operator, $y = h[x] + c^o[x, \beta]$. The VarBC algorithm depends on the specification of both the background error covariance matrices for the state, \mathbf{B}_{x} and the bias coefficient, \mathbf{B}_{β} . In practice these are never known precisely. We investigate:

- The sensitivity of the state analysis error covariance A_x to mis-specifying B_β ; the sensitivity of the bias correction analysis error covariance A_{β} to mis-specifying B_{χ} ;

Scalar Illustration

Figures 1 and 2 plot the sensitivity of the scalar state analysis error variance, a_x to mis-specifying b_x (self-sensitivity – figure 1) and mis-specifying b_β (crosssensitivity – figure 2).

Figure 1 varies b_x^a when b_β^a is under- (1a) and over- (1b) estimated.

- a_x is minimised when k_x^a increases and when $\delta b_x = b_x b_x^a > 0$, ie. when we underestimate b_x^a .
- When b^a_β is overestimated then 'danger zone' decreases.

Figure 2 varies b_{β} when b_{x}^{a} is under-(2a) and over-(2b) estimated.

- a_x is minimised when k_x^a increases and when $\delta b_\beta = b_\beta b_\beta^a < 0$, ie. when we overestimate b_{β}^{a} .
- When b_x^a is underestimated then 'danger zone' decreases.

To avoid the 'danger zone' and minimise a_x it is best to underestimate b_x^a and to overestimate b_{β}^{a} .

Scalar equations for a_x and a_β mirror each other, so the opposite is true for a_{β} , i.e. to avoid the 'danger zone' and minimise a_{β} it is better to

Is it better to over- or underestimate B_{χ}/B_{β} , in order to avoid an analysis that has error covariance greater than the background?

Theory

In the optimal case, **the analysis error covariance**, \mathbf{A}_{ν} , for $\boldsymbol{\nu} = (\boldsymbol{x}, \boldsymbol{\beta})^T$ is given by, $\mathbf{A}_{v.\text{opt}}[\mathbf{B}_v] = (\mathbf{I} - \mathbf{K}_v \mathbf{H}_v) \mathbf{B}_v,$

where the Kalman gain matrix is given by, $\mathbf{K}_{v} = \mathbf{B}_{v}\mathbf{H}_{v}^{\mathrm{T}}(\mathbf{H}_{v}\mathbf{B}_{v}\mathbf{H}_{v}^{\mathrm{T}} + \mathbf{R})^{-1}$; \mathbf{B}_{v} is the true background error covariance matrix for the control vector; \mathbf{H}_{v} is the linearised observation operator for the control vector; and **R** is the observation error covariance matrix.

When the **background error covariance is mis-specified, the analysis error** covariance includes a correction term (see [1])

 $\mathbf{A}_{v}[\mathbf{B}_{v}] = \mathbf{A}_{v,\text{opt}}[\mathbf{B}_{v}^{a}] + (\mathbf{I} - \mathbf{K}_{v}^{a}\mathbf{H}_{v})(\mathbf{B}_{v} - \mathbf{B}_{v}^{a})(\mathbf{I} - \mathbf{K}_{v}^{a}\mathbf{H}_{v})^{\mathrm{T}},$

where \mathbf{B}_{v}^{a} is the assumed background error covariance matrix for the control vector and \mathbf{K}_{v}^{a} is the Kalman gain dependent on \mathbf{B}_{v}^{a} . Using the result of [1] we find that when we use VarBC, we can separate \mathbf{A}_{v} into its \boldsymbol{x} and $\boldsymbol{\beta}$ components as follows,

 $\mathbf{A}_{x} = (\mathbf{I}^{n} - \mathbf{K}_{x}^{a}(\mathbf{H} + \mathbf{C}_{x}))\mathbf{B}_{x}^{a} + (\mathbf{I}^{n} - \mathbf{K}_{x}^{a}(\mathbf{H} + \mathbf{C}_{x}))\delta\mathbf{B}_{x}(\mathbf{I}^{n} - \mathbf{K}_{x}^{a}(\mathbf{H} + \mathbf{C}_{x}))^{\mathrm{T}}$ $+ \mathbf{K}_{x}^{a} \mathbf{C}_{\beta} \delta \mathbf{B}_{\beta} (\mathbf{K}_{x}^{a} \mathbf{C}_{\beta})^{\mathrm{T}},$

 $\mathbf{A}_{eta} = (\mathbf{I}^r - \mathbf{K}^a_{eta} \mathbf{C}_{eta}) \mathbf{B}^a_{eta} + (\mathbf{I}^r - \mathbf{K}^a_{eta} \mathbf{C}_{eta}) \delta \mathbf{B}_{eta} (\mathbf{I}^r - \mathbf{K}^a_{eta} \mathbf{C}_{eta})^{\mathrm{T}}$

 $+ \mathbf{K}^{a}_{\beta}(\mathbf{H} + \mathbf{C}_{x})\delta \mathbf{B}_{x}(\mathbf{K}^{a}_{\beta}(\mathbf{H} + \mathbf{C}_{x}))^{\mathrm{T}},$

 \mathbf{C}^{o}_{β} and \mathbf{C}^{o}_{x} are the linearised bias correction in terms of $\boldsymbol{\beta}$ and \boldsymbol{x} ; $\delta \mathbf{B}_{x} = \mathbf{B}_{x} - \mathbf{B}^{a}_{x}$; $\delta \mathbf{B}_{\beta} = \mathbf{B}_{\beta} - \mathbf{B}_{\beta}^{a}$. \mathbf{K}_{x}^{a} and \mathbf{K}_{β}^{a} give the weightings between observations to the prior for the state/bias correction coefficients respectively and are given by,

 $\mathbf{K}_{x}^{a} = \mathbf{B}_{x}^{a}(\mathbf{H} + \mathbf{C}_{x}^{o})^{\mathrm{T}}((\mathbf{H} + \mathbf{C}_{x}^{o})\mathbf{B}_{x}^{a}(\mathbf{H} + \mathbf{C}_{x}^{o})^{\mathrm{T}} + \mathbf{C}_{\beta}^{o}\mathbf{B}_{\beta}^{a}\mathbf{C}_{\beta}^{o\mathrm{T}} + \mathbf{R})^{-1},$

$$\mathbf{K}^{a}_{\beta} = \mathbf{B}^{a}_{\beta} \mathbf{C}^{o\mathrm{T}}_{\beta} ((\mathbf{H} + \mathbf{C}^{o}_{x}) \mathbf{B}^{a}_{x} (\mathbf{H} + \mathbf{C}^{o}_{x})^{\mathrm{T}} + \mathbf{C}^{o}_{\beta} \mathbf{B}^{a}_{\beta} \mathbf{C}^{o\mathrm{T}}_{\beta} + \mathbf{R})^{-1}.$$

From the equations for A_x and A_β we find,

• When $\mathbf{K}_{x}^{a}(\mathbf{H} + \mathbf{C}_{x})$ tends away/towards the identity: \mathbf{A}_{x} is more/less sensitive to

overestimate b_x^a and underestimate b_β^a .

- the accuracy of \mathbf{B}_{x} than the accuracy of \mathbf{B}_{β} ;
- When $\mathbf{K}_{\beta}^{a} \mathbf{C}_{\beta}$ tends away/towards the identity: \mathbf{A}_{β} is more/less sensitive to the accuracy of \mathbf{B}_{β} than the accuracy of \mathbf{B}_{χ} .
- The 'danger zones' are defined when $A_x > B_x$ or $A_\beta > B_\beta$, due to wrongly misspecifying the assumed background error covariances [1].

References

1. Eyre, J.R., and Hilton, F.I., Sensitivity of analysis error covariance to the mis-specification of background error covariance, Quart. J Roy. Meteor. Soc., 139(671), (2013) pp. 524-533

Acknowledgements

• We thank John Eyre and Stefano Migliorini of the Met Office for their useful comments.

*Contact information

- Department of Meteorology, University of Reading, Whiteknights, RG6 6AH
- Email: devon.francis@pgr.reading.ac.uk

Figure 2: A_x in a scalar illustration, a_x varying both k_x^a and $\delta b_\beta = b_\beta - b_\beta^a$. $h = c_\beta = b_x^a = b_\beta^a$ 1, $c_x = 0$. (a) $b_x = 1.5$ and (b) $b_x = 0.5$. Pink dashed line shows when $a_x = b_x$

Conclusions

- Mis-specifying both B_x and B_β will change A_x and A_β from their optimal. The sensitivity depends on the gain matrix K.
- To avoid $a_x > b_x$, better to underestimate b_x^a and to overestimate b^a_{β} .
- However, to avoid $a_{\beta} > b_{\beta}$: best to overestimate b_{x}^{a} and to underestimate b^a_{β} .
- These results show how jointly estimating the observation biases, via varBC, changes the criteria for avoiding an analysis of the state and biases, that are less accurate than the background.