# Sensitivity of VarBC to the Misspecification of Background Error Covariances 

## Introduction

To correct for observational biases, VarBC extends variational data assimilation to find the analysis of the bias correction coefficients, $\boldsymbol{\beta}$, as well as the state, $\boldsymbol{x}$. The correction is defined via the observation operator, $\boldsymbol{y}=h[\boldsymbol{x}]+c^{o}[\boldsymbol{x}, \boldsymbol{\beta}]$. The VarBC algorithm depends on the specification of both the background error covariance matrices for the state, $\mathbf{B}_{x}$ and the bias coefficient, $\mathbf{B}_{\beta}$. In practice these are never known precisely. We investigate:

The sensitivity of the state analysis error covariance $A_{x}$ to misspecifying $B_{\beta}$; the sensitivity of the bias correction analysis error covariance $\mathrm{A}_{\beta}$ to mis-specifying $\mathrm{B}_{\chi}$;
Is it better to over- or underestimate $\mathbf{B}_{x} / \mathbf{B}_{\beta}$, in order to avoid an analysis that has error covariance greater than the background?

## Theory

In the optimal case, the analysis error covariance, $\mathbf{A}_{v}$, for $\boldsymbol{v}=(\boldsymbol{x}, \boldsymbol{\beta})^{T}$ is given by, $\mathbf{A}_{v, \text { opt }}\left[\mathbf{B}_{v}\right]=\left(\mathbf{I}-\mathbf{K}_{v} \mathbf{H}_{v}\right) \mathbf{B}_{v}$,
where the Kalman gain matrix is given by, $\mathbf{K}_{v}=\mathbf{B}_{v} \mathbf{H}_{v}^{\mathrm{T}}\left(\mathbf{H}_{\mathrm{v}} \mathbf{B}_{v} \mathbf{H}_{v}^{\mathrm{T}}+\mathbf{R}\right)^{-1} ; \mathbf{B}_{v}$ is the true background error covariance matrix for the control vector; $\mathbf{H}_{v}$ is the linearised observation operator for the control vector; and $\mathbf{R}$ is the observation error covariance matrix.
When the background error covariance is mis-specified, the analysis error covariance includes a correction term (see [1])
$\mathbf{A}_{v}\left[\mathbf{B}_{v}\right]=\mathbf{A}_{v, \text { opt }}\left[\mathbf{B}_{v}^{a}\right]+\left(\mathbf{I}-\mathbf{K}_{v}^{a} \mathbf{H}_{v}\right)\left(\mathbf{B}_{v}-\mathbf{B}_{v}^{a}\right)\left(\mathbf{I}-\mathbf{K}_{v}^{a} \mathbf{H}_{v}\right)^{\mathrm{T}}$,
where $\mathbf{B}_{v}^{a}$ is the assumed background error covariance matrix for the control vector and $\mathbf{K}_{v}^{a}$ is the Kalman gain dependent on $\mathbf{B}_{v}^{a}$. Using the result of [1] we find that when we use $\operatorname{VarBC}$, we can separate $\mathbf{A}_{v}$ into its $\boldsymbol{x}$ and $\boldsymbol{\beta}$ components as follows,

$$
\begin{aligned}
& \mathbf{A}_{x}=\left(\mathbf{I}^{n}-\mathbf{K}_{x}^{a}\left(\mathbf{H}+\mathbf{C}_{x}\right)\right) \mathbf{B}_{x}^{a}+\left(\mathbf{I}^{n}-\mathbf{K}_{x}^{a}\left(\mathbf{H}+\mathbf{C}_{x}\right)\right) \delta \mathbf{B}_{x}\left(\mathbf{I}^{n}-\mathbf{K}_{x}^{a}\left(\mathbf{H}+\mathbf{C}_{x}\right)\right)^{\mathrm{T}} \\
&+\mathbf{K}_{x}^{a} \mathbf{C}_{\beta} \delta \mathbf{B}_{\beta}\left(\mathbf{K}_{x}^{a} \mathbf{C}_{\beta}\right)^{\mathrm{T}},
\end{aligned}
$$

$\mathbf{A}_{\beta}=\left(\mathbf{I}^{r}-\mathbf{K}_{\beta}^{a} \mathbf{C}_{\beta}\right) \mathbf{B}_{\beta}^{a}+\left(\mathbf{I}^{r}-\mathbf{K}_{\beta}^{a} \mathbf{C}_{\beta}\right) \delta \mathbf{B}_{\beta}\left(\mathbf{I}^{r}-\mathbf{K}_{\beta}^{a} \mathbf{C}_{\beta}\right)^{\mathrm{T}}$

$$
+\mathbf{K}_{\beta}^{a}\left(\mathbf{H}+\mathbf{C}_{x}\right) \delta \mathbf{B}_{x}\left(\mathbf{K}_{\beta}^{a}\left(\mathbf{H}+\mathbf{C}_{x}\right)\right)^{\mathrm{T}},
$$

$\mathbf{C}_{\beta}^{o}$ and $\mathbf{C}_{x}^{o}$ are the linearised bias correction in terms of $\boldsymbol{\beta}$ and $\boldsymbol{x} ; \delta \mathbf{B}_{x}=\mathbf{B}_{x}-\mathbf{B}_{x}^{a}$;
$\delta \mathbf{B}_{\beta}=\boldsymbol{B}_{\beta}-\mathbf{B}_{\beta}^{a} . \mathbf{K}_{x}^{a}$ and $\mathbf{K}_{\beta}^{a}$ give the weightings between observations to the prior for the state/bias correction coefficients respectively and are given by,
$\mathbf{K}_{x}^{a}=\mathbf{B}_{x}^{a}\left(\mathbf{H}+\mathbf{C}_{x}^{o}\right)^{\mathrm{T}}\left(\left(\mathbf{H}+\mathbf{C}_{x}^{o}\right) \mathbf{B}_{x}^{a}\left(\mathbf{H}+\mathbf{C}_{x}^{o}\right)^{\mathrm{T}}+\mathbf{C}_{\beta}^{o} \mathbf{B}_{\beta}^{a} \mathbf{C}_{\beta}^{o \mathrm{~T}}+\mathbf{R}\right)^{-1}$
$\mathbf{K}_{\beta}^{a}=\mathbf{B}_{\beta}^{a} \mathbf{C}_{\beta}^{o \mathrm{~T}}\left(\left(\mathbf{H}+\mathbf{C}_{x}^{o}\right) \mathbf{B}_{x}^{a}\left(\mathbf{H}+\mathbf{C}_{x}^{o}\right)^{\mathrm{T}}+\mathbf{C}_{\beta}^{o} \mathbf{B}_{\beta}^{a} \mathbf{C}_{\beta}^{o \mathrm{~T}}+\mathbf{R}\right)^{-1}$.

From the equations for $\mathbf{A}_{x}$ and $\mathbf{A}_{\beta}$ we find,
When $\mathbf{K}_{x}^{a}\left(\mathbf{H}+\mathbf{C}_{x}\right)$ tends away/towards the identity: $\mathbf{A}_{x}$ is more/less sensitive to the accuracy of $\mathbf{B}_{x}$ than the accuracy of $\mathbf{B}_{\beta}$;
When $\mathbf{K}_{\beta}^{a} \mathbf{C}_{\beta}$ tends away/towards the identity: $\mathbf{A}_{\beta}$ is more/less sensitive to the accuracy of $\mathbf{B}_{\beta}$ than the accuracy of $\mathbf{B}_{x}$.
The 'danger zones' are defined when $\mathbf{A}_{x}>\mathbf{B}_{x}$ or $\mathbf{A}_{\beta}>\mathbf{B}_{\beta}$, due to wrongly misspecifying the assumed background error covariances [1].

## References

1. Eyre, J.R., and Hilton, F.I., Sensitivity of analysis error covariance to the mis-specification of background error covariance, Quart. J Roy. Meteor. Soc., 139(671), (2013) pp. 524-533

## Acknowledgements

- We thank John Eyre and Stefano Migliorini of the Met Office for their useful comments.

[^0]
## Scalar Illustration

Figures 1 and 2 plot the sensitivity of the scalar state analysis error variance, $a_{x}$ to mis-specifying $b_{x}$ (self-sensitivity - figure 1 ) and mis-specifying $b_{\beta}$ (crosssensitivity - figure 2 ).
Figure 1 varies $b_{x}^{a}$ when $b_{\beta}^{a}$ is under- (1a) and over- (1b) estimated.
$a_{x}$ is minimised when $k_{x}^{a}$ increases and when $\delta b_{x}=b_{x}-b_{x}^{a}>0$, ie. when we underestimate $b_{x}^{a}$

- When $b_{\beta}^{a}$ is overestimated then 'danger zone' decreases.

Figure 2 varies $b_{\beta}$ when $b_{x}^{a}$ is under- (2a) and over- (2b) estimated.
$a_{x}$ is minimised when $k_{x}^{a}$ increases and when $\delta b_{\beta}=b_{\beta}-b_{\beta}^{a}<0$, ie. when we overestimate $b_{\beta}^{a}$.
When $b_{x}^{a}$ is underestimated then 'danger zone' decreases.
To avoid the 'danger zone' and minimise $a_{x}$ it is best to underestimate $b_{x}^{a}$ and to overestimate $b_{\beta}^{a}$.
Scalar equations for $a_{x}$ and $a_{\beta}$ mirror each other, so the opposite is true for $a_{\beta}$, i.e. to avoid the 'danger zone' and minimise $a_{\beta}$ it is better to overestimate $b_{x}^{a}$ and underestimate $b_{\beta}^{a}$.


Figure 1: $\boldsymbol{A}_{x}$ in a scalar illustration, $a_{x}$ varying both $k_{x}^{a}$ and $\delta b=b_{x}-b_{x}^{a} . h=c_{\beta}=b_{\beta}^{a}=$ $1, c_{x}=0, b_{x}=0.75$. (a) $b_{\beta}=1.5$ and (b) $b_{\beta}=0.5$. Pink dashed line shows when $a_{x}=b_{x}$.


Figure 2: $\boldsymbol{A}_{x}$ in a scalar illustration, $a_{x}$ varying both $k_{x}^{a}$ and $\delta b_{\beta}=b_{\beta}-b_{\beta}^{a} . h=c_{\beta}=b_{x}^{a}=$ $1, c_{x}=0$. (a) $b_{x}=1.5$ and (b) $b_{x}=0.5$. Pink dashed line shows when $a_{x}=b_{x}$

## Conclusions

Mis-specifying both $B_{x}$ and $B_{\beta}$ will change $A_{x}$ and $A_{\beta}$ from their optimal. The sensitivity depends on the gain matrix $K$.
To avoid $a_{x}>b_{x}$, better to underestimate $b_{x}^{a}$ and to overestimate $b_{\beta}^{\boldsymbol{a}}$.
However, to avoid $a_{\boldsymbol{\beta}}>b_{\beta}$ : best to overestimate $b_{x}^{\boldsymbol{a}}$ and to underestimate $b_{\boldsymbol{\beta}}^{\boldsymbol{a}}$.
These results show how jointly estimating the observation biases, via varBC, changes the criteria for avoiding an analysis of the state and biases, that are less accurate than the background.


[^0]:    *Contact information

    - Department of Meteorology, University of Reading, Whiteknights, RG6 6AH
    - Email:devon.francis@pgr.reading.ac.uk

