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• However, black box methods have shown 
disappointing results in scientific domains!

- Require lots of data

- Can generate physically inconsistent results

- Unable to generalize to unseen scenarios

- Unable to provide valuable physical insights
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Harnessing the Data Revolution for Scientific Discovery 
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• Big data and ML are Increasingly 
being considered as an 
alternative to the traditional 
scientific discovery paradigm 
based on domain theories



Dichotomy b/w Theory-based and Data Science Models

Both use incomplete sources of information about the two key components of 
knowledge discovery: scientific theory and data
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Theory-based models 
are limited by our 
current scientific 

understanding
Data science models show 
limited performance when 

data is under-representative
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Theory-guided Data Science (TGDS)
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Builds on the foundations of 
data science while taking full 

advantage of domain theories
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Theory-guided Data Science (TGDS)
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Theory-guided Data Science (TGDS)

6

Use of Data

U
s
e

 o
f 

S
c
ie

n
ti
fi
c
 T

h
e

o
ry

T
h

e
o

ry
-b

a
s
e

d
 M

o
d

e
ls

Data Science Models

Theory-guided

Data Science Models

Low High

High

Low

Note that work on this topic has been referred to as

• Knowledge-guided ML
• Science-guided ML
• physics-guided ML
• physics-informed ML
• physics-aware AI

In these works, “physics” or "physics-guided" should be 
more generally interpreted as “science” or “scientific 
knowledge”.
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Knowledge Guided Machine Learning: 
A Paradigm Shift in Scientific Discovery
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Surveys more 
than 300 papers

arXiv:2003.04919

Many conferences/workshops

• 2020 Knowledge-guided Machine Workshop
• 2020 AAAI Spring Symposium on ML in Physical Sciences
• 2020 AAAI Fall Symposium on Physics-Guided AI 
• 2020 SIAM MDS Mini-symposium on Physics-guided AI
• 2020 Physics-informed Machine Learning Workshop at LANL,
• 2020  Physics-Informed Learning Machines for Multiscale and 

Multiphysics Problems at PNNL

https://arxiv.org/abs/2003.04919


Questions 

• Can machine learning (ML) models outperform physics 
based models given sufficient data?

• Can KGML models
– learn with limited observation data?

– generalize to novel testing scenarios? 

– produce results that are physically consistent?

• Can KGML models provide novel insights?

• Can KGML models be useful in absence of observation 
data?
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Modeling Lake Water 
Temperature dynamics

GLM: State of the Art physics based 
model used by USGS



Machine Learning Model for Lake Temperature 
Dynamics
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Drivers

Objective  := Training Loss 𝑌𝑡𝑟𝑢𝑒, 𝑌𝑝𝑟𝑒𝑑 + 𝜆 R 𝑊
Regularization (e.g., L1/L2-norm)

𝑌𝑝𝑟𝑒𝑑 𝑌𝑡𝑟𝑢𝑒

Training Loss
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Labeled Data
(observations)



Machine Learning Model for Lake Temperature 
Dynamics

11

�

…

� � �

Drivers

Objective  := Training Loss 𝑌𝑡𝑟𝑢𝑒, 𝑌𝑝𝑟𝑒𝑑 + 𝜆 R 𝑊
Regularization (e.g., L1/L2-norm)
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Challenges:

1. Labels (𝑌𝑡𝑟𝑢𝑒) are scarce
– Difficult to train models with sufficient complexity

– Standard methods for assessing generalization performance break down

Training Loss
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Machine Learning Model for Lake Temperature 
Dynamics
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Objective  := Training Loss 𝑌𝑡𝑟𝑢𝑒, 𝑌𝑝𝑟𝑒𝑑 + 𝜆 R 𝑊
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Challenges:

1. Labels (𝑌𝑡𝑟𝑢𝑒) are scarce
– Difficult to train models with sufficient complexity

– Standard methods for assessing generalization performance break down

2. 𝑌𝑝𝑟𝑒𝑑 may be physically inconsistent

Training Loss
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Density-depth constraint
Energy Conservation

Labeled Data
(observations)



Incorporating Physics in ML Models
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Labeled Data

Drivers

𝑌𝑝𝑟𝑒𝑑 𝑌𝑡𝑟𝑢𝑒

Training Loss

+ Physics based Loss Objective Function ∶=

Training Loss 𝑌𝑡𝑟𝑢𝑒 , 𝑌𝑝𝑟𝑒𝑑 + 𝜆 R 𝑊 +

Physics-based Loss 𝑌𝑝𝑟𝑒𝑑
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2020
Energy Conservation Density-depth constraint

Labeled Data
(observations)



KGML Models Can Learn from Unlabeled Data
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Labeled Data

Drivers

Unlabeled Data

Drivers

Training 
Loss

𝑌𝑡𝑟𝑢𝑒, 𝑌𝑝𝑟𝑒𝑑

Physics-based 

Loss 𝑌𝑝𝑟𝑒𝑑

𝑌𝑝𝑟𝑒𝑑

𝑌𝑝𝑟𝑒𝑑

Objective Function ∶=

Training Loss 𝑌𝑡𝑟𝑢𝑒 , 𝑌𝑝𝑟𝑒𝑑 + 𝜆 R 𝑊 +

Physics-based Loss 𝑌𝑝𝑟𝑒𝑑
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Physics-Guided Recurrent Neural Network (PGRNN)
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Incorporating Energy Consistency

Jia et.al SDM2019



Overcoming the Data Sparsity Challenge by Pre-
training with  Physics-based Models 
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Labeled Data

Drivers

𝑌𝑝𝑟𝑒𝑑 𝑌𝑃𝐻𝑌

Training Loss

+ Physics based Loss Objective Function ∶=

Training Loss 𝑌𝑃𝐻𝑌 , 𝑌𝑝𝑟𝑒𝑑 + 𝜆 R 𝑊 +

Physics-based Loss 𝑌𝑝𝑟𝑒𝑑
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Labeled Data
(output of 

physics model)
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KGML for Modeling Lake Water Temperature:

Performance under varying # of observations

GLM: State of the Art physics based 
model used by USGS

RNN: A black-box machine learning 
model that can incorporate time

PGRNN: A machine learning 
framework that leverages physics

GLM: State of the Art physics-based 
model used by USGS

RNN: A black-box machine learning 
model that can incorporate time

GLM: State of the Art physics based 
model used by USGS

Process‐Guided Deep Learning Predictions of Lake 
Water Temperature, Read et.al. WRR, Nov. 2019.

Labeled Data
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KGML for Modeling Lake Water Temperature:

Performance in Novel Testing Scenarios

Process‐Guided Deep Learning Predictions of Lake 
Water Temperature, Read et.al. WRR, Nov. 2019.

Observations from 
Summer seasons are 
used only during test

GLM: State of the Art physics based 
model used by USGS

RNN: A black-box machine learning 
model that can incorporate time

PGRNN: A machine learning 
framework that leverages physics

GLM: State of the Art physics-based 
model used by USGS

RNN: A black-box machine learning 
model that can incorporate time

GLM: State of the Art physics based 
model used by USGS



Can KGML Models Maintain Energy Consistency?
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• Energy conservation 
loss penalizes if the 
model predicts an 
“impossible” energy 
change on a daily scale

No-EC

EC

GLM

dUt/dt = RSW (1- αSW) + RLWin (1- αLW) - RLWout - E – H



Can we pre-train PGRNN using lakes that are very 
different from the target lakes?

• Key Parameters

– Area Depth Profile

– Lake Clarity

– Climate Conditions
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Impact of Training with Incorrect Geometries
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Concluding Remarks

• KGML offer a promising approach for addressing limitations of pure
ML and pure process guided approaches.

• Future Directions:

• How to incorporate complex physical knowledge into model learning and model architecture

• How to model a system with multiple components (e.g., network of river streams, a complex
hydrological system).

• How to make use of real time observation data (i.e., data assimilation in KGML setting)?
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