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Harnessing the Data Revolution for Scientific Discovery
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However, black box methods have shown
disappointing results in scientific domains!

Require lots of data The Parable of Google Flu:

: : : Traps in Big Data Analysis
Can generate physically inconsistent results P g Y

Unable to generalize to unseen scenarios

Unable to provide valuable physical insights
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Dichotomy b/w Theory-based and Data Science Models

High
Theory-based models
are limited by our

current scientific
understanding

Theory-based Models

Use of Scientific Theory

Data science models show
limited performance when
data is under-representative

Low

Data Science Models

Low Use of Data

High

Both use incomplete sources of information about the two key components of
knowledge discovery: scientific.theory and data ... ation anc
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Theory-guided Data Science (TGDS)

Builds on the foundations of
data science while taking full
advantage of domain theories
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High

Use of Scientific Theory

Theory-guided Data Science (TGDS)
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To adequately address climate change, we need novel data-science
methods that account for the spatiotemporal and physical nature of
climate phenomena, Only then will we be able to move from statistical
analysis to scientific insights.
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Theory-guided Data Science (TGDS)

Note that work on this topic has been referred to as

* Knowledge-guided ML
* Science-guided ML

* physics-guided ML

* physics-informed ML
physics-aware Al

In these works, “physics” or "physics-guided” should be
more generally interpreted as “science” or “scientific
knowledge”.
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Knowledge Guided Machine Learning:

Climate Science
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Defense Advanced Research Projects Agency » Program Information

Physics of Artificial Intelligence (PAI)
) ,‘ 5

The Physics of Artificial Intelligence (PAI) program is part of a broad DAPRA initiative t
and adversarial spoofing, and that incorporate domain-relevant knowledge through ger

Itis anticipated that Al will play an ever larger role in future Department of Defense (Dc
processing, to control and coordination of composable systems. However, despite rapic
subfield of machine learning — Al's successful integration into numerous DoD applicatic
development of causal, predictive models and dealing with incomplete, sparse, and noi

To facilitate better incorporation of Al into DoD systems, the PAI program is exploring n
physics, mathematics, and prior knowledge relevant to DoD application domains. PAl &
will help to overcome the challenges of sparse data and will facilitate the development |

A Paradigm Shift in Scientific Discovery
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CCC Catalyzing the computing research community and enabling

Computing Community Consortium the pursuit of innovative, high-impact research

Catalyst

ABOUT VISIONING LEADERSHIP DEVELOPMENT TASK FORCES RESOURCES EVENTS BLOG cceey

Visioning Activity

Artificial Intelligence Roadmap

In fall 2018, the Computing Community Consortium (CCC) initiated an effort to create a 20-Year Roadmap

for Artificial Intelligence, led by Yolanda Gil (University of Southern California and President of AAAI) and

Bart Selman (Cornell University and President-Elect of AAAI). The goal of the initiative was to identify fad.
challenges, opportunities, and pitfalls in the Al landscape, and to create a compelling report to inform E}w
future decisions, policies, and investments in this area. ﬁ

1,
The Roadmap was based on broad community input gathered via a number of forums and communication l
channels: three topical workshops during the fall and winter of 2018/2019, a Town Hall at the annual
meeting of the AAAI, and feedback from other groups of in industry, . academia,
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Surveys more
than 300 papers

Integrating Physics-Based Modeling With Machine
Learning: A Survey arXiv:2003.04919

JARED WILLARD* and XIAOWEI JIA*, University of Minnesota
SHAOMING XU, University of Minnesota

MICHAEL STEINBACH, University of Minnesota

VIPIN KUMAR, University of Minnesota

There is a growing consensus that solutions to complex science and engineering problems require novel
methodologies that are able to integrate traditional physics-based modeling approaches with state-of-the-art
machine learning (ML) techniques. This paper provides a structured overview of such techniques. Application
areas for which these approaches have been applied are summarized, then classes of methodologies used to
construct physics-guided ML models and hybrid physics-ML frameworks are described. We then provide a
taxonomy of these existing techniques, which uncovers knowledge gaps and potential crossovers of methods
between disciplines that can serve as ideas for future research.

Many conferences/workshops

* 2020 Knowledge-guided Machine Workshop

e 2020 AAAI Spring Symposium on ML in Physical Sciences
e 2020 AAAI Fall Symposium on Physics-Guided Al

e 2020 SIAM MDS Mini-symposium on Physics-guided Al

e 2020 Physics-informed Machine Learning Workshop at LANL,
e 2020 Physics-Informed Learning Machines for Multiscale and

Multiphysics Problems at PNNL
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https://arxiv.org/abs/2003.04919

Questions

Can machine learning (ML) models outperform physics
based models given sufficient data?

Can KGML models

— learn with limited observation data?
— generalize to novel testing scenarios?
— produce results that are physically consistent?

Can KGML models provide novel insights?

Can KGML models be useful in absence of observation
data?



Questions

Can machine learning (ML) models outperform physics
based models given sufficient data?

Can KGML models

— learn with limited observation data?
— generalize to novel testing scenarios?
— produce results that are physically consistent?

Can KGML models provide novel insights?
Can KGML models be useful in absence of observation
data?

Modeling Lake Water
Temperature dynamics

GLM: State of the Art physics based
model used by USGS
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Machine Learning Model for Lake Temperature
Dynamics
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Objective := Training Loss(Ytrue,Ypred) + AR(W)
Regularization (e.g., L1/L2-norm)
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Machine Learning Model for Lake Temperature
Dynamics

Ypred Ytrue

%
R

Drivers [ ‘ —> Y — g Labeled Data

Training Loss (observations)
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X

output layer

@

input layer

hidden layer 1 hidden layer

Objective := Training Loss(Ytrue,Ypred) + AR(W)
Regularization (e.g., L1/L2-
Challenges: 5 (e.g. Li/2:norm)

1. Labels (Y¢ye) are scarce

— Difficult to train models with sufficient complexity

— Standard methods for assessing generalization performance break down
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Machine Learning Model for Lake Temperature

Dynamics
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tput layer

Objective := Training Loss(Ytrue,Ypred) + AR(W)
Regularization (e.g., L1/L2-norm)

Challenges:

1. Labels (Y¢ye) are scarce
Difficult to train models with sufficient complexity

2. Yyreq may be physically inconsistent
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Standard methods for assessing generalization performance break down
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Incorporating Physics in ML Models
Labeled Data

Drivers
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Labeled Data
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Denser water s at higher depth
Physics-based Loss (Y red)

Energy Conservation

Depth
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KGML Models Can Learn from Unlabeled Data

Labeled Data Yored
: g Training
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input layer
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Physics-Guided Recurrent Neural Network (PGRNN)
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Overcoming the Data Sparsity Challenge by Pre-
training with Physics-based Models

Labeled Data
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Training Loss (YPHY» Ypred) + AR(W) +

Physics-based Loss (Ypred)
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KGML for Modeling Lake Water Temperature:
Performance under varving # of observations
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KGML for Modeling Lake Water Temperature:

Performance in Novel Testing Scenarios

. - Train: spring, fall, winter
Train & test similar @ Test: summer
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Process-Guided Deep Learning Predictions of Lake
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GLM: State of the Art physics-based
model used by USGS

: A black-box machine learning
model that can incorporate time

PGRNN: A machine learning
framework that leverages physics
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Can KGML Models Maintain Energy Consistency”?
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Can we pre-train PGRNN using lakes that are very
different from the target lakes?

* Key Parameters
— Area Depth Profile
— Lake Clarity
— Climate Conditions



Impact of Training with Incorrect Geometries

‘mj// 9855825 m I9BEEEZS m” \ 39BE5EZS i’ /
18989925 m”™
Martini Cone Barrel Mendota
Method 0% 0.2% 2% 20% 100%
RINN 4.615(+£0.173) 2.311(£0.240) 1.531(+0.083) 1.48%(+0.091)
RNNEC _ . 4.107(+0.181) 2.149(+0.163) 1.489(+0.115) 1.471(%0.077)
RNNEC-Plone] 1 2 469(+0.168)  2.056(+0.184)  1.595(x0.097) 1452(£0.113)  1.374(+0.074)
RNNEC.plarell T 3339(+0.098) 2.060(+0.144) 1.617(£0.090) 1.401(£0.098) 1.383(+0.078)
RNNEC-pmarting | 5340(+0.110)  3.033(£0.104)  2.216(+0.141)  1.485(+0.092) 1.459(+0.059)
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Concluding Remarks

 KGML offer a promising approach for addressing limitations of pure
ML and pure process guided approaches.

e Future Directions:

* How to incorporate complex physical knowledge into model learning and model architecture

 How to model a system with multiple components (e.g., network of river streams, a complex
hydrological system).

* How to make use of real time observation data (i.e., data assimilation in KGML setting)?
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Workshop on Knowledge Guided Machine Learning (KGML):
T

Dates: August 18-20, 2020. (Daily times: 9:30am-12:30 and 1:30-4:30pm CDT)

Format: 100% virtual, open to public - available as zoom webinar and as YouTube live stream.

Email Opt-in  Background Agenda Organizers

Quicklinks to session details: Introduction Aquatic Sciences Hydrology Weather/Climate Translational Biology Closing Panel

T VIEW NS. *Please note, recorded sessions will be posted approximately 48 hours post recording.

Inaugural Workshop Information:

The inaugural workshop took place August 18-20, 2020 virtually over zoom. Over 1000 people registered from over 30 countries, and a variety of topics and

vibrant discussions were recorded and are available to watch here: https://z.umn.edu/kgmlworkshopyoutube.

If you would like to receive emails of future events, please Opt-in for KGML emails here.

Background:

This workshop is part of a 2-year conceptualization project funded by the NSF's Harnessing the Data Revolution (HDR) program involving researchers from the

University of Minnesota, University of Wisconsin, Penn State, Colorado State University, and the University of Virginia. This project aims to develop a framework
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